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The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in
motivated behaviors, various types of reward, and, more recently, in cognitive processes.
Functional theories have emphasized DA's involvement in the orchestration of goal-
directed behaviors and in the promotion and reinforcement of learning. The affective
neuroethological perspective presented here views the ML-DA system in terms of its ability
to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms
to search for all varieties of life-supporting stimuli and to avoid harms. A description of the
anatomical framework in which the ML system is embedded is followed by the argument
that the SEEKING disposition emerges through functional integration of ventral basal
ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spreads
into BG, DA transmission promotes the “release” of neural activity patterns that induce
active SEEKING behaviors when expressed at the motor level. Reverberation of these
patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual
representations within the extended networks of the SEEKING urge. In this way, the
SEEKING disposition influences attention, incentive salience, associative learning, and
anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part,
caused by the activation of the SEEKING disposition, ranging from appetitive drive to
persistent craving depending on the intensity of the affect. The implications of such a view
for understanding addiction are considered, with particular emphasis on factors
predisposing individuals to develop compulsive drug seeking behaviors.
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1. Introduction

1.1. The mesolimbic dopamine (ML-DA) system

The ML-DA system (Fig. 1) has received considerable attention
due to its involvement in a range of psychological processes
and neuropsychiatric diseases. In fact, after the development
of a DA theory of schizophrenia (Carlsson, 1974, 1978; Snyder,
1972; Meltzer and Stahl, 1976), additional ML-DA hypotheses
have been proposed to explain addiction (Wise and Bozarth,
1981, 1987; Koob, 1992), attention deficit hyperactivity disorder
(ADHD) (Oades, 1987; Levy, 1991; Russell, 2000), and depression
(Willner, 1983a,b; Dailly et al., 2004) as well as global behav-
ioral activation (Gray, 1995) ranging from response persistence
to behavioral compulsions (Salamone and Correa, 2002; Everitt
and Robbins, 2005).

Localized electrical brain stimulation studies (Olds and
Milner, 1954; Heath, 1964; Olds, 1977; Wauquier and Rolls,
1976) have implicated the ML-DA in positive rewarding states
(Wise, 1978, 1981; Wise and Rompre, 1989) as well as in
appetitive motivated behaviors (Panksepp, 1971, 1981a, 1982,
1986, 1998; Blackburn et al., 1987, 1989; Berridge and Robinson,
1998; Ikemoto and Panksepp, 1999). Since DA is also released
in response to aversive stimuli and stress (Abercrombie et al.,
1989; Puglisi-Allegra et al., 1991; Rouge-Pont et al., 1993;
Pruessner et al., 2004), it appears to promote generalized
behavioral arousal under both positive as well as negative
emotional conditions, perhaps in terms best conceptualized as
the seeking of safety (Ikemoto and Panksepp, 1999). Moreover,
the ML-DA system has recently been recognized for its role in
the determination of personality traits, including “novelty” or
“sensation” seeking (Bardo et al., 1996; Zuckerman, 1990),
“extraversion” (Depue and Collins, 1999), and “impulsivity”
(Cardinal et al., 2004).

Current interpretations of ML-DA functions diverge with
respect to emphasis on unconditioned or behavioral prim-
ing effects (motivational theories) versus conditioned ef-
fects (learning theories). The “psychomotor activation”
hypothesis (Wise and Bozarth, 1987), the “behavioral
activation system” hypothesis (Gray, 1995), the “behavioral
facilitation” hypothesis (Depue and Collins, 1999), the
“SEEKING system hypothesis” (Panksepp, 1981a,b, 1998;
Ikemoto and Panksepp, 1999), the “wanting” hypothesis
(Berridge and Robinson, 1998), and the “effort-regulation”
hypothesis (Salamone and Correa, 2002; Salamone et al.,
2003) all acknowledge a motivational interpretation of ML-
DA functioning. They share a common perspective based on
the classic distinction between appetitive and consumma-
tory phases of motivated behaviors (Sherrington, 1906;
Craig, 1918), and with relatively minor differences, consider



Fig. 1 – The ML-DA system. The figure shows a schematic representation of the main forebrain areas reached by the
mesolimbic DA system (Swanson, 1982; German and Manaye, 1993; Haber and Fudge, 1997). According to anatomical and
evolutionistic criteria (Swanson, 2000), the structures innervated by ML-DA have been divided in diencephalic, basal forebrain
and higher forebrain areas. Midbrain: VTA=ventral tegmental area. Diencephalon: LH=lateral hypothalamus, LMB=lateral
mammillary body. Basal forebrain: Nacc=nucleus accumbens, VP=ventral pallidum, OT=olfactory tubercle, CeA=central
nucleus of amygdala, MeA=medial nucleus of the amygdala, BNST=bed nucleus of stria terminalis, LS=lateral septum. Higher
forebrain: pFC=prefrontal cortex, ACC=anterior cingulated cortex, BLA=basolateral amygdala, HC=hippocampal complex.

1 An emotional behavior is a flexible and coherent adaptive
response to biologically relevant stimuli. It has an instinctual and
inherited basis but is different from other instincts because of its
plastic nature and its strong subjective-affective aspects. All the
emotional behaviors are constituted by a wide array of behavioral
and autonomic responses coordinated as an emotional operating
system (or emotional command system) constituted of specific
neural circuits within the brain (Panksepp, 1998).
2 An affective state is the basic subjective feeling characteristic

of primary-process homeostatic drives, emotions and the result-
ing sustained moods.
3 In this paper we will continue to use the convention of

capitalizing the SEEKING disposition indicating that a specific
neurodynamic state is activated and the SEEKING system to help
highlight that a functional neural system is being discussed.
Please also note that capitalizations are used to (i) avoid part–
whole confusions, (ii) to alert readers to the claim that these may
be necessary brain systems for those types of emotional behaviors
and feelings although by no means sufficient for all the emotional
manifestations.
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the DA system as a fundamental drive for the expression of
appetitive-approach behaviors.

The “reinforcement” (Fibiger, 1978; White and Milner, 1992;
Everitt and Robbins, 2005) and the “reward” hypotheses (Wise,
1978; Wise and Rompre, 1989; Schultz, 1997, 1998, 2001;
Spanagel and Weiss, 1999; Di Chiara, 2002; Wise, 2004), on
the other hand, have largely focused on DA as a learning me-
diator. While motivational theories are interested in the
proactive actions of DA transmission on future behaviors,
learning theories tend to consider retroactive effects on
strengthened associations among past events. Although mo-
dern incentive motivation concepts view rewards as promo-
ters of motivational arousal and increased behavioral readi-
ness (Bolles, 1972; Bindra, 1974; Toates, 1986; Berridge and
Robinson, 1998), learning theories consider that the “most
important role of DA in incentive motivation is historical; it is
the stamping-in of stimulus–reward association that has es-
tablished incentive motivational value for previously neutral
stimuli” (Wise, 2004).

Multiple attempts to integrate motivational and learning
perspectives of ML-DA transmission have been pursued (e.g.,
Berridge, 2004; Toates, 2004; Koob, 2004), but a coherent
evolutionary-ethological view of how brain DA promotes cer-
tain types of unconditional psychobehavioral tendencies is
typically missing in most formulations. Therefore, a com-
prehensive hypothesis integrating new findings with earlier
literature on rewarding electric brain stimulation has yet to
emerge. In our opinion, such needed integration may be
achieved by postulating a role of ML-DA inmodifying primary-
process emotional behaviors1 and internal affective states
(Panksepp, 1998, 2005).2 In fact, emotions and affects have
repercussions both on the way animals act in the world and
learn through experience. As extensively described in pre-
vious works (Panksepp, 1981a,b, 1998; Ikemoto and Panksepp,
1999), ML-DA promotes the emergence of the SEEKING
emotional disposition,3 which we envision as an affective urge



Fig. 2 – DA innervation of BG–thalamocortical circuits. All
ascending mesencephalic DA projections innervate the BG
rather widely, while only the ML-DA system projects to the
frontal cortex. Although the DA transmission in frontal cortex
has received an increasing interest, our paper is mainly
focused on the role of DA release in BG. In particular, DA
transmission in ventral and dorsal striatal areas (the input
areas of BG) modulates the communication between
glutamatergic projections arriving from frontal cortex and
GABAergic neurons located inside the striatum. In such a
way, DA regulates the diffusion of neural activity patterns
within basal ganglia–thalamocortical circuits. The figure
does not show the segregation of BG–thalamocortical circuits
described by Alexander and coll. (1986), but the schematic
representation can be applied to limbic, associative or motor
loops of those circuits.
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that characterizes all motivated behaviors. This view has been
around as long as the more recent incentive salience and
reinforcement-type theories but has been typically ignored by
those committed to behaviorist learning paradigms.

1.2. Functional anatomy of the mesencephalic DA
projections

In mammals, most DA-containing neurons are clustered
within three major mesencephalic groups: A8 cells in the
retrorubral field, A9 cells in the substantia nigra (SN) and A10
cells in the ventral tegmental area (VTA) (Dahlstrom and Fuxe,
1964; Ungerstedt, 1971; Lindvall and Bjorklund, 1974; Fallon
and Moore, 1978; German et al., 1983; Arsenault et al., 1988;
German and Manaye, 1993). Similar organizations of DA cell
bodies have been demonstrated in reptiles (Smeets et al., 1987;
Smeets, 1988; Gonzalez et al., 1994) and birds4 (Smits et al.,
1990; Durstewitz et al., 1999). In addition, less dense aggrega-
tions of DA neurons inhabit the supramammillary region of
the hypothalamus, the dorsal raphe and the periaqueductal
gray (Swanson, 1982; Gaspar et al., 1983). Morphological cha-
racteristics, anatomical locations, ascending projections and
their associations with arousal functions have led many to
assign DA neurons to the classical “reticular formation”
(Moruzzi and Magoun, 1949; Schiebel and Scheibel, 1958;
Leontovich and Zhukova, 1963). Placed within the context of
the reticular activating system (Parvizi andDamasio, 2001), DA
neurons are sensitive to various global states of organisms,
and their ascending projections modulate brain arousal in
accordance with those states (Geisler and Zahm, 2005).

The mesencephalic DA cell groups (A8, A9 and A10) lack
clear anatomical boundaries, develop in parallel from com-
mon embryonic tissues (Olson and Seiger, 1972; Fallon and
Moore, 1978; Hu et al., 2004), and partly overlap in their pro-
jection fields (Nauta et al., 1978). Their axons project largely to
structures located in the anterior part of the forebrain and
modulate the activity of cognitive–executive re-entrant cir-
cuits between the cortical mantle and the BG (Alexander et al.,
1986; Kalivas et al., 1999) (Fig. 2). Such circuits are involved in
the organization of practically all motivated behaviors, both
highly flexible and more automatic. It is thought that BG–
thalamocortical circuits produce adaptive behavioral flexibil-
ity, while their dysregulation underlies a whole plethora of
neuropsychiatric diseases, from depression to obsessive-com-
pulsive disorders, from addiction to Parkinson's, etc. (Swer-
dlow and Koob, 1987; Robbins, 1990; Deutch, 1993; Kropotov
and Etlinger, 1999; Jentsch et al., 2000; Graybiel and Rauch,
2000; Joel, 2001; Groenewegen, 2003). Resembling a spiraling,
functional organization (Zahm and Brog, 1992), a special type
of “state” process, information flow appears to exist between
different loops of such circuitries with feed-forward proces-
sing from limbic regions (especially medial frontal areas) to
executive and motor circuits (Heimer and Van Hoesen, 2006).
DA neurons thereby act as an intermediary of limbic-emo-
4 Comparative studies in vertebrates have demonstrated the
loss of some dopamine (and noradrenaline) cell groups in
amniotes compared with anamniotes, especially in the hypotha-
lamic periventricular region (Smeets and Gonzalez, 2000).
tional and motivational action outflow (Haber et al., 2000; Joel
and Weiner, 2000; Mogenson et al., 1980b).

Although DA cell groups form an anatomical continuum,
the ML-DA system has been differentiated from the nigro-
striatal (NS) DA system on the basis of anatomical and
functional criteria (Bernheimer et al., 1973; Ungerstedt et al.,
1974). TheML-DA system (Fig. 1), situatedmoremedially in the
brain, is more ancient in brain evolution than the more
laterally situated NS-DA circuitry, and it has beenmore clearly
implicated in the regulation of intentional, motivated move-
ments, in flexible-emotive behaviors and in the process of
“reward” than the laterally situated NS-DA fields (Papp and
Bal, 1987; Wise and Bozarth, 1987; Blackburn et al., 1989;
Berridge and Robinson, 1998; Ikemoto and Panksepp, 1999).
The NS-DA system, in contrast, controls procedural aspects of
movements and motivated behaviors as it reaches more
dorsal areas of BG, where behavioral and cognitive habits are
learned, stored and expressed (Hornykiewicz, 1979; Carli et al.,
1985, 1989; Graybiel, 1997; Jog et al., 1999; Haber, 2003).

1.3. How can DA affect behavioral and psychological
processes?

DA receptor activatedmolecular pathways have been partially
unraveled (Greengard et al., 1999, 2001a), but the precise me-
chanisms by which DA influences behavioral and psycholo-
gical phenomena remain unclear. As a modulator of neural
activity, DA interacts with fast synaptic transmission (Green-



6 The ARAS represents an endogenous system for regulating
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gard, 2001b) and thereby influences the way specific external
information is processed within the brain (Mesulam, 1998).
One hypothesis posits that DA regulatory function increases
the signal-to-noise ratio and enhances the efficacy of neural
networks in elaborating biologically significant signals (Rolls
et al., 1984; DeFrance et al., 1985; Kiyatkin and Rebec, 1996;
Nicola et al., 2000). Based on in vivo and in vitro single-cell
studies, the signal-to-noise ratio hypothesis explains how
behavioral and motivational arousal processes may be linked
to specific cognitive or perceptual representations. However,
for understanding how behavioral and psychological arousal
is processed in the nervous system, large-scale energetic
states of the brain, instead of electrical activity of single
neurons, need to be considered (Steriade, 1996, 2000; Ciompi
and Panksepp, 2004; Llinas et al., 2005; Freeman, 2005). DA
modulates global-field dynamics, desynchronizes cortical-
derived oscillatory rhythms and promotes high-frequency
waves along the gamma band within BG–thalamocortical cir-
cuits (Brown and Marsden, 1998; Brown, 2003; Magill et al.,
2004; Lee et al., 2004). In our view, these rhythms may be ac-
companied by the release of neurodynamic instinctual sequences,
which are essential infrastructures for intentional behaviors.5

Neurodynamic sequences are repetitive sequential activity
patterns reverberating across specific areas and circuits of the
brain. Recently, they have been called “avalanches” (Beggs and
Plenz, 2003, 2004), and their influence on brain activity may be
described with the concept of “dynamic attractors” (Freeman,
2000, 2001, 2003).

The sequential patterns favored by DA in ventral BG–
thalamocortical circuits may relate to an instinctual drive to
seek life-supportive aspects of the environment and to ac-
tively escape those aspects that could be destructive. These
neurodynamic sequences are evolutionarily intrinsic, but epi-
genetically refined, procedural patterns associated with the
expressions of exploring and approach behaviors (i.e., loco-
motion, sniffing, head movements, saccades). The reverbera-
tion of such sequential patterns within brain circuits changes
the individual's attitude towards the environment, promoting
the SEEKING disposition to dominate the motivational land-
scape of the organism (Panksepp, 1998). This establishes a
variety of expectancy states that energize and coordinate the
anticipation of life-supporting events with characteristic
reward seeking behavioral tendencies (Panksepp, 1981a,b,
1986). In this way, primary-process “intentions in action” get
transformed into learning and thought-related “intentions to
act” (Panksepp, 2003).
5 Intentions literally mean to tend to something. In their
primary-process form, they are endogenously produced instinc-
tual activities that naturally predispose generalized (initially
objectless) action urges to evolve behaviorally towards more
specific goal-directed responses. Here, we generally choose to use
the concept of intentional behaviors instead of goal-directed
behaviors because goal-directed behaviors presuppose the ex-
plicit representation of the goal. On the contrary, intentional
behaviors are intrinsically driven by impulses of neural activity
organizing a specific type of behavioral sequence even before
specific objects come to be represented as the final goals. In
summary, intentional behaviors are sustained initially by the
unconditional tendency of basal forebrain/BG circuits to complete
a neurodynamic sequence once it has been activated.
1.4. Cardinal feature of the affective neuroethological
perspective

Our interpretation of the behavioral functions of the ML-DA
system is based on a theoretical perspective we have called
the affective neuroethological view. Such a perspective has cha-
racteristic features that diverge from current dominant theo-
reticalmodels and that focus on a series of currently neglected
elements.

(1) Energy. Modern brain research often fails to account for
the energetic and dynamic aspects of neural, behavioral and
mental activities. We should ask why animals perceive the
world as they do and are spontaneously active in globally
energetic ways. How can cognitive computations arise in the
brain without the support of global dynamic states that
channel an organism's needs via large-scale brain network
functions?Where do such global states arise, and how do they
interact with informational processes?

New neurodynamic approaches that grant organisms in-
trinsic behavioral urges are needed to make sense of why
organisms do what they do (Panksepp, 1998; Kandel, 1999;
Freeman, 2000, 2003; Solms and Turnbull, 2002; Ciompi and
Panksepp, 2004). It is time to introduce such concepts into the
discussion of brain DA functions since mesencephalic DA and
ascending reticular activating system (ARAS) are fundamental
energetic sources for many types of neural activity6 (Moruzzi
and Magoun, 1949; Lindsley et al., 1949, 1950; Jones, 2003). In
particular, behavioral activating properties of DA may depend
on its capacity to influence global field dynamics in the fore-
brain, as reflected in DA facilitation of the emergence of fast-
wave oscillatory rhythms in BG and cortical areas (Brown and
Marsden, 1998; Levy et al., 2000; Tseng et al., 2001; Brown, 2003;
Magill et al., 2004; Sharott et al., 2005).

(2) Internal procedural sequences. Behavior is not limited to
learning and associative processes; neuro-behavioral instinc-
tual processes, shaped by evolution, are essential for almost
all aspects of goal-directed learning. Neurocognitive behavior-
ism denies (or at least ignores) an organism's intrinsic
behavioral identity and thus neglects certain inborn adaptive
capacities as fundamental determinants of learning (Lorenz,
1965). In addition to neural plasticity and top–down hierarch-
ical brain processes, wemust harness ethological traditions in
order to better understand intrinsic capacities of organisms
brain activity and responding to environmental stimuli and i
includes interconnected neural nuclei in the brainstem, the
diencephalon and the basal forebrain. The ARAS has also been
called the “isodendridic core” of the brain, consisting in a “neura
continuum with overlapping dendritic fields stretching from
spinal cord to telencephalon” (Geisler and Zahm, 2005, p. 287)
As the main source of the basic sleep–wake cycle, it promotes
waking arousal as well as behavioral inhibition (Jones, 2003)
Placed within the context of the reticular activating system
(Parvizi and Damasio, 2001), DA neurons are sensitive to various
global states of the organism and their ascending projections
modulate brain arousal in accordance with those states. More-
over, since most areas innervated by DA projections send
feedback to DA neurons via direct and indirect pathways, the
ascending DA systems form re-entrant loops with the reticular
formation.
t

l

.

.
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and thereby emphasize the importance to evolutionary con-
straints on learning (Tinbergen, 1951; Lorenz, 1965; Burkhardt,
2005). In vertebrates, such constraints emerge substantially
from the influences that subcortical brain structures exert over
neocortical functions (MacLean, 1990; Panksepp, 1998).

In particular, basal forebrain and BG are involved in the
expression of sequential, species-specificmovements, such as
instinctive and unlearned sequential groomingmovements in
rodents (Cromwell and Berridge, 1996), which are the Fixed
Action Patterns (FAPs) of ethologists7 (Lorenz, 1950; Tinbergen,
1951; MacLean, 1990). Moreover, the BG influence learning,
especially when different sequences of actions are linked into
a single functional unit (Knowlton et al., 1996; Graybiel, 1998;
Jog et al., 1999; Packard and Knowlton, 2002; Bayley et al.,
2005). Basal forebrain areas, including BG, extended amygdala,
septum and nucleus of Meynert (Heimer and Van Hoesen,
2006), represent the deep, subcortical parts of the cerebral
hemispheres (Swanson, 2000), and they are essential founda-
tions for higher information processing regions of neocortex
to operate. Housing abundant GABA inhibitory neurons, they
form reciprocal networks and send inhibitory outputs to
thalamic, hypothalamic and midbrain nuclei (Kitai, 1981; Be-
rardelli et al., 1998; Kropotov and Etlinger, 1999). Situated
between the cortex, the diencephalon and the brainstem, the
basal forebrain is viewed as largely inhibitory with tonical
suppression of behavioral actions (Swanson, 2000). Never-
theless, when something perturbs its intrinsic equilibrium,
particular sequences of activity are released. Therefore, basal
forebrain nuclei have been considered “doors that, when un-
locked, may release into action large functions outside them”
(Llinas, 2002).

(3) Emotions. Dorsal BG areas control habitual behaviors,
whereas other basal forebrain nuclei (ventral BG, extended
amygdala, and septum) are involved in emotional behaviors
(Koob, 1999; Swanson, 2000; Alheid, 2003; Heimer and Van
Hoesen, 2006). Emotions comprise sequences of FAPs that
characterize their expressive and communicative aspects
(Darwin, 1872; MacLean, 1990; Llinas, 2002), but one main
characteristic of emotion is to regulate the organism's behav-
ioral repertoire in flexible ways. Behavioral plasticity arises
when each emotional operating system orchestrates a wide
range of potential responses in accordance with environmen-
tal conditions (Panksepp, 1998).When an emotion is activated,
the organism's attention is focused largely on a particular set
of stimuli, memories and responses. For example, an animal
does not eat while experiencing intense fear; food is transi-
ently excluded from its interests. Diffusion of basal forebrain/
BG characteristic patterns communicates an emotional dis-
position within the brain. Such patterns represent the basic
7 In rodents, for example, the BG control instinctive and un-
learned sequential grooming movements (Cromwell and Berridge,
1996). The homologues of BG in birds produce highly stereotyped
behaviors, such as those used in song learning (Brainard, 2004; Kao
et al., 2005), while the striatum in reptiles is involved in regulation
of social behaviors (Greenberg, 2003). In primates and other
mammals, BG control movements and cognitive executive pro-
cesses (DeLong, 1990; Graybiel, 1995; Gerfen and Wilson, 1996),
especially in initiation and expression of its automatic procedural
component (Graybiel, 1998; Jog et al., 1999).
action tendencies characteristic of various primary-process
emotions, whose neural representations influence the activity
of many different brain regions and help match perceptual
and cognitive representations into a global action tendency. In
such a way, basal forebrain changes intentional states and
orients behavior in specific directions.

From this perspective, it is inadequate to try to explain
motivations, intentions and emotions simply from top–down
cognitive or representational perspectives. Intentions-in-
action, as intrinsic impulses to act, may best be viewed as
neural dynamic sequences, which, once activated, constitute
internal procedural drives8 (Llinas, 2002). In our model, such
neurodynamic sequences emerge from within basal forebrain
and BG areas (Knowlton et al., 1996; Graybiel, 1998), and
associated medial diencephalic and mesencephalic circuits,
with parallel roles in learning and expression of motor habits
and emotions (MacLean, 1990; Graybiel, 1997; Jog et al., 1999).

(4) Affective feelings. Neuronal activity is not limited to the
production of computational representations of the world; it
also helps organize a large variety of states, among which the
emotions and associated affects have been ignored for
perhaps too long (Panksepp, 1998, 2005). Removing affectivity
from neuroscience may lead to a profound misunderstanding
of intrinsic brain organization and functioning and hinder
scientific understanding of how brains truly operate. A
recently re-introduced James-Lange type view of emotions
considers affective feeling to be produced by “somaticmarker”
representations of body changes (Damasio, 1996; Damasio et
al., 2000). However, the nature of feelings should also incor-
porate the intrinsic intentionality of many instinctual beha-
viors; emotions are not only a consequence of “what hap-
pened” (Damasio, 1999), but also “what is happening”, “what is
going to happen” and “what may happen”. Such processes are
not uniquely human characteristics; an affective core under-
lying subjectivity appears to have emerged early in vertebrate
brain evolution (Panksepp, 1981a,b, 1998, 2005), derived from
brain systems that regulate the inner states of the organisms
(MacLean, 1990; Damasio, 1999; Craig, 2003; Thompson and
Swanson, 2003; Schulkin et al., 2003; Berntson et al., 2003;
Porges, 2003; Sewards and Sewards, 2003; Alheid, 2003;
Denton, 2006). The core affective substrate of every emotional
feeling seems to be generated and, in part, informs hierarchi-
cally related neural networks that include, most prominently,
the periaqueductal gray, the hypothalamus and the extended
amygdala (Panksepp, 1998). Indeed, accumulating evidence
for some kind of primary-process psychological experiences
arising from such primitive subcortical circuits is becoming
substantial (Panksepp, 2005; Merker, 2007). In our view, the
core affective states are communicated to higher brain levels
through the emergence of specific neurodynamic sequences,
so that the cognitive–evaluative aspects of emotion can be
elaborated in a coordinated fashion by various forebrain areas,
especially orbitofrontal and medial frontal regions.
8 As better described in Section 4, internal procedural drives are
sequential neural activity patterns spreading within neural
circuits and exerting a strong influence on brain activity. They
push neural activity to evolve along specific directions, in
accordance with the sequence specified by the pattern.
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2. Empirical studies

2.1. Electrical self-stimulation of the brain (ESSB)

The discovery of ESSB by Olds and Milner (1954) represented a
major breakthrough in understanding the neurobiological
bases of reward. Electrical stimulation of various brain sites
in association with specific behaviors increased the prob-
ability that animals would repeat those behaviors. These
studies led to the recognition of reward areas in the brain (Olds
et al., 1971; Wise, 1996, 2005; Chau et al., 2004) with the medial
forebrain bundle (MFB) being a primary neural pathway
interconnecting many relevant brain regions (see Wise, 2002
for a review). Olds (1977) extensively analyzed the pervasive
neuronal learning during appetitive conditioning that oc-
curred along the trans-hypothalamic self-stimulation con-
tinuum (for review, see Figure 8.3 in Panksepp, 1998). Fur-
thermore, it was demonstrated that with fixed-interval
stimulation of this substrate, animals would exhibit sponta-
neous conditioning characteristics of fixed-interval instru-
mental behavior (Clark and Trowill, 1971; Burgdorf et al., 2000).

It was also observed that electric stimulations of the MFB
not only reinforce instrumental actions, but they also arouse a
variety of consummatory behaviors such as drinking, feeding,
gnawing and predation (Glickman and Schiff, 1967; Valenstein
et al., 1969, 1970; Panksepp, 1971, 1981a,b). Such stimulations
also induced generalized arousal, leading to exploratory
behaviors not strictly related to any biological needs (Gallistel,
1974; Panksepp, 1981a,b). Thus, it was suggested that ESSB
fosters a general incentive-based disposition to approach
environmental stimuli (Glickman and Schiff, 1967; Trowill
et al., 1969; Panksepp, 1981a,b). With the characterization of
brain DA circuitry (Ungerstedt, 1971), it was further recognized
that the ML-DA system is an important ascending and
activating component of the MFB involved in the learning as
well as in themotivational effects of electric brain stimulation
(see Wise and Rompre, 1989 for a review). Moreover, increas-
ing DA levels into the Nacc with psychostimulants enhances
the rewarding properties of self-stimulation itself (Wise, 1996).
The ML-DA system is now generally considered a key circuitry
involved in promoting aroused states concerned with appeti-
tive motivations, attention to rewards and behavioral persis-
tence and, by some, the avoidance of punishment—namely
the seeking of safety (Ikemoto and Panksepp, 1999).

2.2. Psychomotor activating effects of DA drugs across
vertebrates and invertebrates

Drugs that enhance DA functions mediate the emergence of
unconditional, behaviorally aroused states in many species.
Facilitators of DA release, such as cocaine or amphetamine,
and agonists of DA receptors promote waking and behavioral
activation in all mammals (Randrup and Munkvad, 1972; Wise
and Bozarth, 1987; Trampus et al., 1991; Nishino et al., 1998;
Wisor et al., 2001). Rats and mice increase locomotor activity
in response to such drugs and, if high doses are used, they
show stereotypical behaviors (Wise and Bozarth, 1987). In
contrast, decreased DA receptor stimulation is associatedwith
hypoactivity and catalepsy (Fog, 1972; Johnels, 1982; Monti et
al., 1990). Similarly tomammals, injection of cocaine increases
locomotion in birds (Levens and Akins, 2001) and DA promotes
locomotor and behavioral activity in amphibians (Matsunaga
et al., 2004; Endepols et al., 2004).

DA induces hyperactivity and exploration also in adult fruit
flies (McClung andHirsh, 1998; Pendleton et al., 2002; Lima and
Miesenbock, 2005; Kume et al., 2005) and other invertebrate
species (Torres and Horowitz, 1998; Sawin et al., 2000; Hills et
al., 2004), suggesting a remarkable evolutionary conservation
of function. However, pro-DA drugs may also reduce locomo-
tor activity in invertebrates, perhaps acting peripherally (Mar-
tinez et al., 1988; Pavlova, 2001; Panksepp and Huber, 2004;
Chase et al., 2004; Jorgensen, 2004). Although effects of DA on
invertebrate locomotion are not uniform, the rewarding pro-
perties for pro-DA drugs seem to be conserved across inver-
tebrates (Bellen, 1998; Wolf, 1999; Kusayama and Watanabe,
2000; Bainton et al., 2000; Brembs et al., 2002; Panksepp and
Huber, 2004; Reyes et al., 2005).

2.3. Microinjections and lesion studies

Starting with the work of Ungerstedt et al. (1974), pharmaco-
logical and lesion studies of areas with ML system cell bodies
(VTA) and projections have clarified the behavioral functions
of the DA transmission in mammals. Microinjections of DA
drugs into the Nacc increase locomotor activity and explora-
tory behaviors (Jackson et al., 1975; Pijnenburg et al., 1976; Carr
and White, 1987; Swanson et al., 1997; Schildein et al., 1998),
conditioned approach responses (Taylor and Robbins, 1986;
Kelley and Delfs, 1991; Burns et al., 1993; Wolterink et al., 1993;
Parkinson et al., 1999; Wyvell and Berridge, 2000) and anti-
cipatory sexual behaviors (Everitt et al., 1989; Everitt, 1990). DA
enhancing microinjections are also associated with rewarding
properties. Animals readily self-administer DA agonists or
drugs that directly increase DA transmission in the Nacc
(Hoebel et al., 1983; Phillips et al., 1994; Carlezon et al., 1995;
Ikemoto et al., 1997a,b). In the conditioned place preference
(CPP) paradigm, animals spend more time in environments
associated with Nacc injections of psychostimulants and DA
agonists (Carr and White, 1986; White et al., 1991; Liao et al.,
1998). Experimental modulation of DA transmission in ventral
pallidum (VP) and olfactory tubercle has similar, often even
more intense, effects than in the Nacc (Ikemoto, 2003; Ikemoto
et al., 2005). In fact, microinjections of various DA drugs in the
VP elicit locomotion and reward-related behaviors (Gong et al.,
1996, 1999; Fletcher et al., 1998) whereas VP lesions reduce
responses to natural and artificial rewards (Hiroi and White,
1993; Gong et al., 1997). Microinjections of GABA-A receptor
antagonists (e.g., picrotoxin, bicuculline) into the VTA increase
locomotion by disinhibiting DA neurons (Arnt and Scheel-
Kruger, 1979; Mogenson et al., 1980b; Stinus et al., 1982), and
rodents will learn to self-administer GABA-A receptor antago-
nists (David et al., 1997; Ikemoto et al., 1997a) or NMDA agonist
(Ikemoto, 2004) into the VTA.

Experimentally enhanced DA function increases beha-
vioral activity, whereas lesions of the ML-DA system reduce
or eliminate exploratory and appetitive-approach behaviors
(Koob et al., 1978; Fink and Smith, 1980; Robbins and Everitt,
1982; Evenden and Carli, 1985; Taghzouti et al., 1985; Robbins
et al., 1989; Pierce et al., 1990; Pfaus and Phillips, 1991; Jones



290 B R A I N R E S E A R C H R E V I E W S 5 6 ( 2 0 0 7 ) 2 8 3 – 3 2 1
and Robbins, 1992; Liu et al., 1998). Pharmacological reduction
of Nacc DA transmission inhibits seeking-approach behaviors
in response to reward-associated cues (Blackburn et al., 1992;
Di Ciano et al., 2001; Parkinson et al., 2002; Wakabayashi et al.,
2004). Interestingly, ML-DA depletion or inhibition disrupts
active-avoidance behaviors (Jackson et al., 1977; Koob et al.,
1984; McCullough et al., 1993), suggesting that ML-DA also
participates in the seeking of safety (Ikemoto and Panksepp,
1999).

The functions of DA projections to the pFC are less clear. On
one hand, intra-medial pFC injections of amphetamine
produce moderate increases in open-field activity (Carr and
White, 1987; Kelley et al., 1989) andDA transmission in the pFC
is involved in the reinstatement of cocaine seeking behaviors
in rats (McFarland and Kalivas, 2001; Park et al., 2002; McFar-
land et al., 2004; Sun and Rebec, 2005). On the other hand,
microinjections of DA agonists in the pFC decrease sponta-
neous, novelty- and psychostimulants-induced locomotor
activity (Radcliffe and Erwin, 1996; Broersen et al., 1999;
Lacroix et al., 2000; Beyer and Steketee, 2000). A significant
negative correlation also exists between mesocortical DA
transmission and locomotor activity (Hedou et al., 1999). Con-
sistent with these findings, pFC DA lesions produce hyper-
activity (Tassin et al., 1978) and have anti-depressive effects9

(Espejo and Minano, 1999; Ventura et al., 2002). Additional
dilemmas exist concerning the role of mesocortical DA
transmission in mediation of reward. Whereas rats self-ad-
minister cocaine directly into pFC and cocaine injected in the
medial pFC induces CPP (Hemby et al., 1990), amphetamine in
the medial pFC is not self-administrated (Goeders et al., 1986)
nor does it induce CPP (Carr and White, 1986; Schildein et al.,
1998). It has also been shown that lesion of mesocortical
projections does not reduce reward learning (Isaac et al., 1989;
Hemby et al., 1992; Shippenberg et al., 1993; Burns et al., 1993)
or self-administration of intravenous cocaine (Martin-Iverson
et al., 1986; Schenk et al., 1991; McGregor et al., 1996).

In contrast to the role of DA in ventral BG and prefrontal
areas, ML-DA transmission within the amygdala (in basolat-
eral as well as in medial and central nuclei) has been im-
plicated in the expression and learning of fear (Pezze and
Feldon, 2004). For example, inhibition of DA transmission
within the amygdala reduces fear-potentiated startle (Greba
and Kokkinidis, 2000), the retrieval of conditioned-fear asso-
ciations (Nader and LeDoux, 1999) and has a general anxiolytic
effect (de la Mora et al., 2005). On the other hand, rats self-
administer D-amphetamine directly in the central nucleus of
the amygdala (Chevrette et al., 2002), while DA transmission in
the basolateral amygdala contributes to the establishment
and reinstatement of instrumental and associative reward
learning (Zarrindast et al., 2003; Andrzejewski et al., 2005;
Alleweireldt et al., 2006). In summary, both positive and
negative emotional behavioral dispositions appear to be
stimulated by DA in the amygdala. However, since DA elicits
active but not passive avoidance behaviors, it may be argued
9 In our opinion, the frontal cortex controls and inhibits
primary-process emotional processes such as those that may be
disinhibited in attention deficit hyperactivity disorders (ADHD),
leading to heightened levels of emotional acting out (Panksepp,
2001).
that central amygdaloid DA is still involved in promoting
energized “approach towards safety” (Ikemoto and Panksepp,
1999). We would argue that in the absence of negative incen-
tive stimuli, the ML-DA system largely promotes positive af-
fective states and that only in the presence of various
concurrent negative emotional states or stimuli might it con-
tribute to aversive feelings. However, we do not knowwhether
this contribution is to directly facilitate aversive feelings or,
alternatively, perhaps to dampen those feelings, even though
not to the point of affective neutrality. Much more work is
needed on such aversion related affective issues.

2.4. The Nacc core/shell distinction

The Nacc consists of two anatomical and functional subdivi-
sions, the shell and core (Zahm and Brog, 1992; Heimer et al.,
1997; Zahm, 1999; Kelley, 1999; Di Chiara, 2002; Ikemoto et al.,
2005). DA projections to the shell are more sensitive to a great
variety of stimuli, including drugs of abuse (Pontieri et al.,
1995), restraint and pharmacological stress (Deutch and Ca-
meron, 1992; Horger et al., 1995; Kalivas and Duffy, 1995; King
et al., 1997), food (Bassareo and Di Chiara, 1999) and novel
stimuli or environments (Rebec et al., 1997; Rebec, 1998; Barrot
et al., 2000). Moreover, microinjections of DA drugs into the
medial shell, but not the core, support instrumental behaviors
and CPP (Carlezon and Wise, 1996; Ikemoto et al., 1997a,b;
Chevrette et al., 2002; Sellings and Clarke, 2003). It is generally
accepted that the shell is involved in mediating the rewarding
effects of psychostimulants (Parkinson et al., 1999; Rodd-Hen-
ricks et al., 2002; Ito et al., 2004), but there is less agreement
concerning the psychomotor activating effects of these drugs.
For example, the behavioral activating property has been
attributed to an action of psychostimulants in the core
(Weiner et al., 1996; West et al., 1999; Boye et al., 2001; Sellings
and Clarke, 2003), in the shell (Heidbreder and Feldon, 1998;
Parkinson et al., 1999; Ito et al., 2004) and in both structures
(Pierce and Kalivas, 1995; Ikemoto, 2002). However, a recent
experiment indicated that the locomotor activating properties
of cocaine depend upon DA transmission into the core, while
rewarding effects of the psychostimulant depend upon DA
transmission in the shell and into the olfactory tubercle
(Sellings et al., 2006). It has also been shown that rats learn to
self-administer the psychostimulant in themedial shell and in
the medial tubercle, but not in the core, ventral shell and
lateral tubercle (Ikemoto et al., 2005). Although these findings
indicate that rewarding effects of psychostimulants are
mediated by Nacc shell and olfactory tubercle, while the
locomotor activating effects are mediated by the Nacc core,
previous findings demonstrated that DA transmission in the
core is necessary for some associative processes, for instance,
the establishment of Pavlovian or instrumental conditioning
(Parkinson et al., 1999, 2000; Hall et al., 2001; Hutcheson et al.,
2001; Di Ciano et al., 2001).

Interestingly, DA transmission in the shell of the Nacc has
different characteristics when compared with the transmis-
sion in the core. Basal extracellular DA levels are greater in the
core and ventral medial pFC than the shell (King and Finlay,
1997; Hedou et al., 1999). However, studies in postmortem
tissue punches revealed that basal DA levels are greater in the
shell than the core, while the DOPAC/DA ratio is greater in the
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core (Deutch and Cameron, 1992). Although the total amount
of DA (extracellular+intracellular) could be higher in the shell,
the amount of extracellular DA could be greater in the core due
to a faster rate of release and uptake. In fact, in vitro voltam-
metric studies show that the values of DA release and uptake
in the shell Nacc are approximately one-third of those mea-
sured in the core region. Moreover, the density of [3H]ma-
zindol binding sites in the Nacc was examined by autoradio-
graphy and the shell was found to have an average of half the
number of DA uptake sites than those measured in the core
region (Jones et al., 1996). Together, these findings suggest that
DA transmission in the shell of the Nacc presents the
characteristic of so-called slow (Greengard et al., 1999), non-
synaptic (Vizi, 2003) or volume transmission (Sykova, 2004;
Bach-Y-Rita, 2005). Conversely, DA transmission in the core
seems to be more confined to the synaptic clefts.

Besides the neurochemical differences between the core
and the shell of the Nacc, important functional differences
appear to be associatedwith these subregions. The DA volume
transmission in the shell of the Nacc may be involved in the
generation and the maintenance of an aroused and positive
affective state. On the other hand, the DA transmission in the
core may be involved in the expression of this emotion in the
BG–thalamocortical circuits and then in the “control of goal-
directed behavior by associative process” (Ito et al., 2004).
Indeed, excitotoxic lesions of Nacc core disrupt Pavlovian ap-
proach behavior (Parkinson et al., 2000), conditioned reinfor-
cement (Parkinson et al., 1999) and Pavlovian to instrumental
transfer (Hall et al., 2001), while coincident activations of D1
receptors and NMDA receptors in the Nacc core are necessary
for associative learning (Smith-Roe and Kelley, 2000; Wickens
et al., 2003; Hernandez et al., 2005).

2.5. Electric activity of DA cells: phasic and tonic DA
transmission

Phasic DA transmission is the short-lasting and impulse-
dependent release that appears as a consequence of neural
burst firing (Gonon, 1988; Suaud-Chagny et al., 1992). Follow-
ing such bursts, high levels of DA molecules are released into
the synaptic cleft at up to millimolar concentration (Garris
et al., 1994) and then rapidly removed via a re-uptake system
(Floresco et al., 2003). In contrast, tonic DA levels are diffused
in the extracellular space outside the synaptic clefts, but exist
in very small concentrations (in the nanomolar range) and
change relatively slowly (Grace, 2000).

It has recently been proposed that phasic DA in the Nacc
is the key component in the process of reward (Grace, 1993,
2000; Wightman and Robinson, 2002; Self, 2003) and that the
rewarding effect of electrical stimulation of the MFB is
mediated, at least partially, by transient DA release (Wise,
2005). The role of phasic DA in reward processes is
envisioned to reflect the fact that phasic DA is a time- and
space-specific event, necessary for associative learning, and
acts as a detector of coincidence when coupled with glu-
tamatergic inputs directed into the Nacc (O'Donnell, 2003;
Dalley et al., 2005). Since DA is transiently released before the
execution of goal-directed movements (Phillips et al., 2003;
Roitman et al., 2004), phasic DA may promote not only
reward-related learning (Reynolds et al., 2001) but also
motivated behaviors (Phillips et al., 2003; Ghitza et al., 2004,
2006).

The presence of unpredicted salient, novel and rewarding
stimuli induces transient DA cell bursts (Miller et al., 1981;
Freeman et al., 1985; Steinfels et al., 1983; Schultz et al., 1993;
Mirenowicz and Schultz, 1996; Schultz et al., 1997; Horvitz
et al., 1997; Schultz, 1998; Horvitz, 2000; Cooper, 2002), sug-
gesting a role of phasic DA in the salience attribution process
or the attentional-exploratory behavior that always follows
such waking events. However, the overall mean DA cell burs-
ting (and firing) appears independent from the tonic arousal
state of the organism since DA neurons do not alter firing rates
with waking and sleep (Trulson et al., 1981; Steinfels et al.,
1983; Miller et al., 1983; Trulson and Preussler, 1984; Hyland
et al., 2002). Effects of stress on DA cell bursting are also not
clear with some reports of a reduction in bursts or no effect
(Ungless, 2004), and increases in burst firing observed by
others (Anstrom and Woodward, 2005).

In contrast, increased amounts of tonic extracellular DA
levels exist during emotional arousal, either in aversive and
appetitive conditions, or when organisms are actively engaged
with the environment (Thierry et al., 1976; Roth et al., 1988;
Cousins et al., 1999; Di Chiara et al., 1999a,b). Evidence from
voltammetry (Trulson, 1985) and microdialysis (Smith et al.,
1992; Feenstra et al., 2000; Lena et al., 2005) illustrates that
tonic DA is sensitive to fluctuations in sleep–wake states, and
there is also enhanced release during REM-dream episodes
(Miller et al., 1983; Solms, 2000; Maloney et al., 2002; Gottes-
mann, 2002). Activating the D2-type inhibitory postsynaptic
and presynaptic receptors, tonic DA generally reduces the in-
fluence that descending glutamatergic projections exert over
neurons in the BG and VTA (Nicola et al., 2000; Schmitz et al.,
2003). In such a way, tonic DA activity may block the cortical
and limbic top–down control, favoring the expression of
behaviorally aroused states generated subcortically (see
Section 4).

It has been demonstrated that tonic DA reduces the firing
of DA neurons and phasic DA release via D2 autoreceptor
activation in terminal projections and soma (Fig. 3 left) (Grace,
2000; Schmitz et al., 2003). However, long-lasting elevations of
tonic DA levels may also increase the quanta of DA molecules
released per single burst (Fig. 3 right). Two lines of evidence
suggests this hypothesis.

Psychostimulants increase tonic DA levels into the Nacc,
and thereby enhance the rewarding properties of self-stimu-
lation (Wise, 1996), by presumably potentiating the amount of
phasic DA released after each stimulation. Moreover, amphe-
tamine produces an impulse-dependent DA release into the
Nacc (Ventura et al., 2004; Ventura and Puglisi-Allegra, 2005),
which may be associated with its rewarding effect. Since
amphetamine generally suppresses the electrical activity of
DA neurons (Westerink et al., 1987), the impulse-dependent
DA release may arise from an increased amount of molecules
released per impulse.

Continuous electrical stimulations of DA cells progressively
decrease impulse-released DA quanta (Garris et al., 1999).
Therefore, investigators need to consider that if an electrically
overactive system promotes blunted phasic DA release, a less
excitable system may be characterized by the fact that each
action potential now has a greater power of each impulse.



Fig. 3 – Functional feedbacks between tonic and phasic DA
transmission. In theGracemodel (Grace, 1991, 2000), tonic DA
levels were indicated to inhibit phasic DA release since D2
autoreceptor activation decreases bursting (and firing)
activity of DA neurons. Without questioning the validity of
the Grace theory, our alternative model considers the
existence of two different feedback loops between tonic and
phasic DA transmission. The first one is well experimentally
demonstrated, it acts in short-timeperiods and consists of the
negative influences that tonic DA exerts over DA cell bursting
(as in the Grace model). However, in our alternative model, a
positive feedback loop has been hypothesized (but not
demonstrated yet) since its existencemay help in explaining
some important empirical evidence. The supposed positive
feedback loop should act in longer time frames and consist in
tonic DA increasing the amount (or quanta) of DA releasedper
single burst. We called this component the relative phasic DA
transmission to distinguish it from the absolute phasic DA
transmission, which is dependent upon the relative phasic DA,
plus the mean bursting activity of DA neurons. In our model,
tonic DA transmission increases the relative phasic DA
(potentiating the efficiency of each burst) and inhibits the
mean bursting activity of DA neurons, without strongly
modifying the absolute phasic DA. In summary, the Grace
model emphasizes the existence of a negative interaction
between tonic and phasic DA, whereas our model
individuates the existence of a positive feedback loop.
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Therefore, although the inhibitory action of tonic DA over
phasic DA has been emphasized (Grace, 2000), the possibility
of positive reciprocal feedbacks should also be considered (Fig.
3). In particular, we suggest that high levels of tonic DA do not
decrease the total amount of phasic DA per se, but reduce the
excitability of DA cells to descending excitatory glutamatergic
inputs, acting either indirectly via D2 receptors located on DA
neurons or directly on glutamatergic terminals reaching the
VTA. However, high levels of tonic DAwill increase the quanta
of DA released per single impulse, potentiating the effect that
each impulsewill produce in terms of extracellular DA release.
In conclusion, we are tempted to hypothesize that high tonic
DA levels will predispose to less excitable but more powerful
ML-DA network influences.
3. Theoretical interpretations

Complex relationships among neural, behavioral and psy-
chological levels guarantee the presence of substantial gaps
in our understanding that remain to be filled. The adoption
of novel integrative hypotheses may be essential for pro-
moting empirical predictions that can help fill the remaining
gaps.

3.1. Neurocognitive behaviorism

Much of today's experimental work is driven by a common
theoretical perspective, here termed “neurocognitive beha-
viorism”. It is characterized by two main assumptions: (1)
Animal (and human) behaviors are the product of associative
memories stored in the brain (Watson, 1913; Skinner, 1938;
Martin and Levey, 1988; Ressler, 2004; Rolls, 2004; Pickens and
Holland, 2004). (2) Cognitive processes, mediated by higher
cortical functions, can be conceptualized as computations for
unconscious control of behavior and modeled in accordance
with information processing theories (Kihlstrom, 1987; Gerst-
ner et al., 1997; Fuster, 2002; Miyashita, 2004; Vogel, 2005).
Behavioristic and cognitive approaches have melded together
since associative learning is considered the process through
which organisms acquire and modify their predictive cogni-
tions (Sutton and Barto, 1981).

Within this context, the principal focus of research is to
clarify how DAmodulates learning by sustained alterations of
intracellular molecular mechanisms (Greengard et al., 1999;
Hyman and Malenka, 2001; Barrot et al., 2002; Nestler, 2004),
enhanced synaptic plasticity (Centonze et al., 2001; Li et al.,
2003; Huang et al., 2004) and facilitated neural communication
(White, 1996; Robinson and Kolb, 1999; Reynolds et al., 2001;
Nestler, 2001a; Wickens et al., 2003; Centonze et al., 2003).
Considering the motivational properties of ML-DA transmis-
sion, neurocognitive behaviorism is characterized by a top–
down, incentive salience orientation of brain functioning
rather than a bottom–up view that envisions brain DA to
facilitate ingrained psychobehavioral subroutines necessary
for survival. Motivations are viewed as cognitive representa-
tions of future goals elaborated in cortical structures, which
thereby control the activities of motor circuitries. Within this
worldview, DA regulates the communication between cortico-
limbic inputs and Nacc neurons and then manages informa-
tion flow from cognitive representations (neocortical and
higher limbic areas) to movements (BG areas) (Cepeda et al.,
1998; Kalivas and Nakamura, 1999; Nicola et al., 2000; Schultz
and Dickinson, 2000; Joel et al., 2002; Dayan and Balleine, 2002;
Murer et al., 2002; West et al., 2003; O'Donnell, 2003; Carelli,
2004).

The neurocognitive behaviorist perspective has advanced
hypotheses about the etiology of DA-related psychiatric di-
seases. Drug abuse, for example, is viewed as a product of
abnormal learning, occurring when the associations between
external predictors of the drug's presence and behaviors
directed towards its acquisition and consumption progres-
sively consolidate (Robbins and Everitt, 1999; Robinson and
Berridge, 2000) (see Section 5). In the establishment of com-
pulsive seeking behaviors, the critical step is the cortico-
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striatal circuits fueling by drug-induced DA release (Pierce and
Kalivas, 1997; Di Chiara, 1998; Di Chiara et al., 1999a,b; Berke
and Hyman, 2000; Nestler, 2001b, Everitt et al., 2001; Wolf,
2002; Kelley, 2004; Self, 2004). Despite such theoretical suc-
cesses, it remains difficult for such models to explain how
increased ML-DA transmission also promotes certain kinds of
unconditional responses, such as behavioral activation
expressed in exploratory-investigatory behaviors (Panksepp,
1981a,b; Wise and Bozarth, 1987) and the generation of
positive affective states (Drevets et al., 2001; Burgdorf and
Panksepp, 2006). It is also unresolved why individuals show
differences in dispositional vulnerability toward addiction
(True et al., 1999; Uhl, 1999, 2004; Vanyukov and Tarter, 2000).
If addiction is a learned process, what predisposes an
individual to be a good or bad learner?

3.2. Formal models of DA functioning

Electrophysiological recordings from DA neurons generally
demonstrate that these cells burst when a reward value is
better than expected (Schultz, 1997, 2002). Phasic (or transient)
DA transmission is thus viewed as key for organisms to
change their internal cognitive schemata in relation to what
happened around them (Grace, 2000; Waelti et al., 2001;
Reynolds et al., 2001; Wightman and Robinson, 2002; Cooper,
2002; Ungless, 2004). DA transmission is thereby conceptua-
lized as a teaching signal, which reorganizes cognitive repre-
sentations by indicating prediction errors (Redgrave et al., 1999;
Schultz and Dickinson, 2000).

The new data on DA transmission seem congruent with
temporal difference (TD) models for reward learning in
animals (Sutton and Barto, 1981). TD models, just like some
ethological models (Panksepp, 1981a,b), view learned behavior
as the product of anticipatory expectations processed within
the brain. These expectations are modeled in algorithmic
computations capable of predicting the reward value of
stimuli which are dynamically modified by experience. Only
recently have such models been utilized to explain DA
functions within the brain (Schultz et al., 1997; Waelti et al.,
2001; Dayan and Balleine, 2002; Montague et al., 2004).

TD models describe “the function of reward according to
the behavior elicited. For example, appetitive or rewarding
stimuli induce approach behavior that permits an animal to
consume” (Schultz et al., 1997). Such formal models predict
that each collection of sensory cues represents a specific
reward value and that animals tend to seek out those that
offer the greatest reward. A movement may be defined as
activity leading to a sequence of perceptual configurations,
whose rewarding value is measured by how strongly it entices
the organism to approach or proceed with a sequence of
learned configurations. A core problem of TDmodels concerns
a stimulus' temporal representation (Schultz et al., 1997),
which is essential for associating sensory cues with future
rewards along a number of intermediate time points. Yet it
remains unclear, in such formalmodels, how a representation
of reward value is translated into concrete actions and how
the animal behaves in novel situations, where no reward
value has been solidified by previous learning.

These problemsmay be well addressed by considering that
sensorial configurations are embedded into pre-motor se-
quences leading organisms tomovewithin and between these
configurations. In well-learned situations, past experiences
determine the succession of perceptual configurations
embedding them within the organism's motor–cognitive
habits. In such cases, initial presentations of reward-predict-
ing stimuli transiently stimulate the DA system, and phasic
DA transmission activates the sequences leading to the
predicted outcome. However, in novel situations (or when
the reward delivery is maximally uncertain), fixed sequences
of movements across sensorial configurations have not yet
been established. The persistent increase of DA cell firing in
such unpredictable conditions (Fiorillo et al., 2003) may
promote the emergence of an unstable state, characterized
by the release of instinctual behavioral arousal patterns,
which drive organisms to explore external stimuli and to
cope with life-challenging events in unpredictable environ-
ments (Panksepp, 1981a,b, 1998).

In summary, formal neurocognitive behaviorist models of
DA functions are built upon a disconnection between brain
information-processing modules responsible for the cognitive
prediction of reward and those intrinsic brain circuits res-
ponsible for the natural behavioral patterns exhibited during
reward seeking. In our view, these two aspects are part of the
same integrated process: an intrinsic instinctual action ten-
dency to move across perceptual/cognitive landscapes so as
to approach towards specific outcomes within environments.
In novel and unpredictable contexts, the reward value of a
stimulus is the product of the sustained emotional tendency
to unconditionally move towards certain objects within the
environment. In learned situations, on the other hand, a
series of configurations is evoked by previously acquired
knowledge so the SEEKING urge is manifested in the ten-
dency to run along the entire sequence until the final con-
figuration is reached. It is possible that the neural circuitry
that subsumes the SEEKING response is the only “ground
state” in the brain upon which effective information proces-
sing can proceed. In other words, all emotional systems
control sensory input gating, as well as selective responses to
those stimuli. Thus incentive salience may be as much a
reflection of changing action readiness as any changing
properties of the perceptual field.

3.3. The incentive salience hypothesis

Recognition of a direct involvement of the ML-DA system in
the behavioral effects of ESSB (seeWise and Rompre, 1989 for a
review) led to a provocative and for a while seminal hypoth-
esis to explain both motivational and learning effects of the
ESSB (Wise et al., 1978). Stimulation of the ML-DA system
induced a positive hedonic state and enhanced the pleasure
derived from consummatory behaviors. Criticism of the hedo-
nic hypothesis emerged from the demonstration that more
intense activation of ML-DA occurs during the appetitive
phase than during the consummatory phase of motivated
behaviors (Blackburn et al., 1987, 1989; Panksepp, 1981a, 1982,
1986). ML-DA thus appears more concerned with “wanting”
and less with “liking” (Berridge and Robinson, 1998). This idea
is consistent with evidence from pharmacological manipula-
tions of the ML-DA system in the context of instrumental
behaviors. Blocking DA activity in the Nacc strongly dimi-
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nishes maze-running speed, even though consummation of
available rewards is unaffected (Ikemoto and Panksepp, 1996).
Reduced DA activity diminishes the appetitive urge more than
consummatory pleasure.10 Likewise, by facilitating arousal of
this systemwith amphetamine in instrumentally conditioned
rats, those animals exhibit more directed appetitive behavior
toward stimuli associated with rewards in the past (Wyvell
and Berridge, 2000, 2001).

According to Berridge, DA is a promoter of themotivational
salience of external stimuli, without implying any conscious
experience of affective quality. “Liking” has been considered
independent from DA transmission as DA does not seem to
promote hedonic taste reactions (Berridge and Robinson,
1998). However, it is important to emphasize that taste plea-
sure may not exhaust the range of possible positive affects
that may be facilitated by brain DA arousal. Moreover, many
experiments have pointed to the involvement of ML-DA trans-
mission in the consummatory phase of motivated behaviors,
such as feeding (see MacDonald et al., 2004 for a review), while
a recent study demonstrated that strongly valenced tastes,
both pleasant and unpleasant, may promote DA arousal (Roit-
man et al., 2005).

Since animals self-stimulate the ML system, which is
strongly controlled by brain DA availability, it also needs to
be explained why the activation of an appetitive “wanting”
state has its own rewarding properties despite being con-
sidered an unconscious process. Otherwise, it is unclear why
animalswould seek to self-activate their own general purpose,
appetitive states. Focusing on this aspect, Berridge (2004)
concluded that problems in the field arise when we wrongly
believe that appetitive behaviors are direct expressions of
what used to be called “drives”. Indeed, in drive-reduction
theories, only the reduction of a drive was originally related to
the reward, while the drive itself was deemed to be aversive
(Hull, 1943; Spence, 1956; Mowrer, 1960). As a solution to the
dilemma, Berridge proposed that appetitive behaviors arise
from the attribution of incentive properties to external stimuli
(pursuant to the views of Bolles, 1972; Bindra, 1974; Toates,
1986), rather than from internal drives. Therefore, “when
incentive salience is attributed to a stimulus representation, it
makes the stimulus attractive [and] attention grabbing”
(Berridge, 2004, p. 195). Since ML-DA transmission presumably
helps an external stimulus to acquire incentive salience
(Berridge and Robinson, 1998), it also influences the learning
of stimulus-related contingencies and appetitive motivations
to approach the stimulus.

3.4. The affective neuroethological perspective

With a focus on the unconscious attributions of salience to
external representations, Berridge's perspective attempted to
explain the role of DA transmission in the absence of any
10 Nevertheless, every consummatory behavior also has an
appetitive component (animals fluctuate between approaching/
manipulating and consuming the food), and hence it is not
surprising that DA transmission is enhanced during feeding, and
partially controls food intake (Hernandez and Hoebel, 1988; Hoebel
et al., 1989; Martel and Fantino, 1996; Ragnauth et al., 2000; Kelley
and Berridge, 2002; MacDonald et al., 2004).
pleasure (specifically sensory “liking”). Berridge claims that
motivations are commonly activated by the presence (or
anticipatory representation) of external stimuli and not
necessarily by internal drives nor affective states. Never-
theless, such a behavioristic shift of focus from the organism
to the environment can be misleading. Although the role of
external stimuli for guiding motivational processes is undeni-
able, an excessive reliance on how perceptual stimuli guide
behavior could obscure an intrinsic, initially objectless, appe-
titive motivation as a real process within organisms. Indeed,
the manner in which ML-DA transmission may increase the
incentive salience of external stimuli is by changing the self-
referential attitude of the organism towards those stimuli. In
this “active-organism” view, which acknowledges the exis-
tence of experienced affect, an internally generated action
tendency (i.e., the SEEKING instinct) lies at the very center of
information processing.

Thus, in our estimation, ML-DA transmission subcortically
promotes the emergence of the emotional SEEKING disposi-
tion, an intrinsic psychobehavioral function of the brain that
evolved to cope with all varieties of life-challenging events in
unpredictable environments (Panksepp, 1981a,b, 1998, 2005).
This disposition consists of instinctual behavioral tendencies
that help organism to move across sensorial configurations
and to approach specific sources of stimulations, including
salient non-reward events (Horvitz, 2000). The SEEKING dis-
position is manifested in energized behaviors such as for-
ward locomotion, orienting movements, sniffing, investigat-
ing and ultrasonic 50-kHz vocalizations in rats (Ikemoto and
Panksepp, 1994; Panksepp, 1998; Burgdorf and Panksepp,
2006). The SEEKING disposition, independent of world events,
would also have its own hedonic properties, not the “pleasure
of satisfaction”, but “enthusiastic positive excitement”,
“interest”, “desire”, and “euphoria”11 (for relevant subjective
human data, see Drevets et al., 2001; Jönsson et al., 1971;
Newton et al., 2001; Romach et al., 1999; Volkow and
Swanson, 2003). Moreover, promoting the urge to project
oneself forward in space and time, the SEEKING disposition,
manifested at the cortical level (e.g., medial frontal cortex),
may facilitate the generation of higher order “forethought”,
positive expectancies and anticipatory states (Panksepp,
1981a,b; Wise, 2005).

It is well-established that emotions affect memory con-
solidation and retrieval (Cahill, 1997; McGaugh, 2000; Packard
and Cahill, 2001; Roozendaal et al., 2001, 2002; Berntson et al.,
2003; Richter-Levin, 2004). By promoting the expression of the
SEEKING disposition, ML-DA transmission may then facilitate
learning, both through attentive processes as well as favoring
the recollection of past events related to the arousal of the
SEEKING state. The SEEKING disposition may be viewed as an
affect-centered instinctual structure binding together percep-
tual and motor configurations. Indeed, associations between
perceptual and motor representations may follow the con-
nections that each of them has established with the SEEKING
11 This does not mean that DA arousal might not contribute to
coping with aversive situations; we would simply predict that it
generally tends to counteract negative feelings, even though it
may not eliminate them.
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state. Such an automatic, associative process relates to
temporal and cue predictability of rewards. The role of the
SEEKING disposition in learning is evident in the shaping of
spontaneous sniffing behavior in rats during the free, fixed-
interval delivery of rewards (Clark and Trowill, 1971; Pank-
sepp, 1981a). Similarly, this phenomenon is also evident in 50
kHz chirping of rats (Burgdorf et al., 2000), an unconditioned
component of ML-DA network activity (Burgdorf and Pank-
sepp, 2006).

Additional evidence supports our view. In classical con-
ditioning, novel or unusual stimuli can be associated with
unconditioned stimuli whereas habitual stimuli in familiar
environments do not condition readily (Rescorla and Wagner,
1972). It is noteworthy that neutral cues initially provoke
sniffing, a DA energized response, but this effect habituates
rapidly (Clark et al., 1970). Moreover, it has been demonstrated
that operant responses for electrical brain stimulation are
always preceded by some exploratory or investigative beha-
viors (Ikemoto and Panksepp, 1996). Unconditioned rewards
may thus promote associative learning to the degree the
SEEKING disposition has been aroused. In such a way, when
the reward arrives and animals begin to exhibit consumma-
tory behavior, the changing neurodynamic of the SEEKING
state (e.g., diminished foraging) or perhaps those associated
with the pleasurable interaction with the reward solidifies the
previously related appetitive activity.

The activation of the emotional SEEKING disposition by
particular environmental stimuli facilitates instrumental
responding within other contexts. For example, the presenta-
tion of a conditioned stimulus enhances instrumental res-
ponse also for unconditioned stimuli different from the one
the conditioned stimulus had previously been paired with
(Corbit and Balleine, 2005). Moreover, an environment asso-
ciated with food delivery enhances the locomotor activating
effects of amphetamine as well as an environment associated
with the amphetamine (Yetnikoff and Arvanitogiannis, 2005).
In these two cases, the effects of the stimulus (or the environ-
ment) on the animal's performance cannot be explained by
direct stimulus–response associations simply because these
associations have never occurred. On the other hand, it is very
probable that associations have been established between the
SEEKING disposition and the operant responses, so they are
released whenever the SEEKING state is again activated
(independently of the stimuli that were originally involved in
the generation of that state).

In summary, the affective neuroethological perspective of
the ML-DA system is centered on the SEEKING disposition
concept, whose ability to explain both motivational and re-
warding function of DA transmission is unique among exist-
ing scientific scenarios. Such perspective can easily incorpo-
rate most of the other views, including variants of enhanced
incentive salience and the maintenance of effortful behaviors
(Salamone et al., 2005). The core of the SEEKING affective state
may be generated in midbrain and hypothalamic areas
(Panksepp, 1998; Damasio, 1999; Parvizi and Damasio, 2001)
and communicated, in part, to BG–thalamocortical circuits via
midbrain DA neurons. As many empirical findings demon-
strated (see Section 2), ventral BG-DA transmission is essential
to the behavioral and mental expression of the SEEKING
disposition. In contrast, DA projections to pFC may facilitate
information processing without activating the affective-emo-
tional, euphoric aspects of the SEEKING urge. In our view, the
attentive and executive functions controlled by mesocortical
DA projections (Goldman-Rakic et al., 2000; Nieoullon, 2002;
Castner et al., 2004; Arnsten and Li, 2005) may constitute more
sophisticated cognitive processes related to the SEEKING
disposition. Since under stressful conditions DA transmission
in the pFC inhibits DA release in the Nacc (Deutch et al., 1990;
Karreman and Moghaddam, 1996; King et al., 1997; Wilkinson,
1997; Jentsch et al., 1988; Ventura et al., 2002), it is also likely
that DA-promoted pFC functions may hinder the overt
expression of the SEEKING disposition in such highly aroused
situations and may potentially inhibit positive affective
states.
4. New inroads of the affective
neuroethological perspective

In the previous section, we described how the behavioral
functions of ML-DA emerge from its ability to activate the
SEEKING emotional disposition. It is now important to provide
new hypotheses describing how this disposition is processed
in the brain. Obviously, this proposal needs an elucidation of
the role of DA in modulating neural activity across brain
circuitries. Indeed, correlative neurophysiological observa-
tions obtained from recording DA neurons (which tell us
much about what DA cells are listening to, but not necessarily
what message they are passing on; see Panksepp, 2005), as is
common in the otherwise excellent electrophysiology work of
W. Schultz and colleagues, should be integrated with neuro-
physiological findings about the effects of DA in its projection
areas (which better informs us about what DA is doing as it is
being released downstream of the inputs).

4.1. DA modulation of neural activity

Binding to its receptors, DA activates a cascade of intracel-
lular processes with many diverse neural influences (Missale
et al., 1998; Greengard et al., 1999), from changing the activity
of ion channels to altering the functionality of different
membrane receptors. DA transmission also regulates gene
expression and leads to permanent synaptic changes (Green-
gard, 2001a,b; Wolf et al., 2003; Nestler, 2004). Along with
many other G-protein-coupled receptors (Hille, 1994), DA re-
ceptors alter neuronal excitability via modulation of voltage-
dependent ion channels and influence behavioral processes
by modulating large-scale neural activity in widespread neu-
ral networks.

DA release generally depresses spontaneous and evoked
cell firing (Siggins, 1978; Dray, 1980; Rowlands and Roberts,
1980; Yim and Mogenson, 1982, 1986; Brown and Arbuthnott,
1983; Johnson et al., 1983; Yang andMogenson, 1984; DeFrance
et al., 1985; Chiodo and Berger, 1986; Hu and Wang, 1988;
Nisenbaum et al., 1988; Hu et al., 1990; Pennartz et al., 1992;
Harvey and Lacey, 1996, 1997; Nicola et al., 1996; Peoples and
West, 1996; Peoples et al., 1998; Nicola and Deadwyler, 2000;
Zhang et al., 2002). It has been argued that behavioral arousal
emerges from a DA disinhibitory role obtained by the block of
an inhibitory pathway. Indeed, themain targets of DA neurons
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are BG GABA inhibitory neurons (Graybiel, 2001; Groenewegen,
2003), and DA decreases firing in the globus pallidus and the
substantia nigra, the two main BG output nuclei (Alexander et
al., 1986; Albin et al., 1989; Gerfen et al., 1990; Bergman et al.,
1994; Nini et al., 1995; Brown and Marsden, 1998; Gerfen, 2000;
Gurney et al., 2001; Brown et al., 2001).

Despite a predominantly inhibitory role, DA also enhances
spontaneous and evoked neural activity in striatal as well in
cortical neurons12 (Gonon and Sundstrom, 1996; Hernandez-
Lopez et al., 1997; Hu and White, 1997; Gonon, 1997; Cepeda et
al., 1998; Lewis and O'Donnell, 2000; West and Grace, 2002;
Charara and Grace, 2003; Chen et al., 2004; Bandyopadhyay et
al., 2005). The general interpretation of such bidirectional
effects is that DA, in a manner similar to NE, enhances the
signal-to-noise ratio in neural networks. In other words, DA
may filter spurious activity and suppress background noise,
while facilitating and enhancing neural activities related to
significant incoming signals (Rolls et al., 1984; DeFrance et al.,
1985; Kiyatkin and Rebec, 1996; O'Donnell and Grace, 1996;
Nicola et al., 2000; West and Grace, 2002; West et al., 2003;
Brady and O'Donnell, 2004). The signal-to-noise ratio hypoth-
esis is a computational theory based on the idea that DA
facilitates the selection of Nacc competing neuronal ensem-
bles (Pennartz et al., 1994; Redgrave et al., 1999) that receive
multiple converging inputs from pFC, hippocampus and
amygdala (Pennartz et al., 1994; O'Donnell and Grace, 1995;
Groenewegen et al., 1999; French and Totterdell, 2002). DA
then modulates synaptic communication (West et al., 2003)
and gates information to the Nacc, favoring the entrance of
salient signals in BG–thalamocortical executive circuits
(Mogenson et al., 1980a; Pennartz et al., 1994; Groenewegen
et al., 1999; West et al., 2003; O'Donnell, 2003) and translating
motivational representations into executive motor plans (Mo-
genson et al., 1980a; Willner and Sheel-Krüger, 1991; O'Don-
nell, 2003). ML-DA also strengthens synaptic associations
between descending glutamatergic projections and BG neural
ensembles, influencing long-term memory processes (Wise,
2004).

4.2. DA modulation of global field dynamics

It is remarkable that cognitive, top–down perspectives of ML-
DA system are largely built on the observation of DA effects on
single neuron firing (Schultz, 1997, 1998, 2001, 2002, 2004,
2006). Based on information from large-scale populations of
neurons, an alternative picture is now emerging. DA transmis-
sion desynchronizes slow rhythms and induces fast-wave
oscillations within the BG–thalamocortical circuits (Brown
12 The impact of DA transmission on neural activity seems to
depend on three main factors: (1) DA receptors: D2-type receptors
are inhibitory, while D1-type receptors feature both excitatory
and inhibitory roles (Hernandez-Lopez et al., 1997; Reynolds et
al., 2001; Floresco et al., 2001a,b; Chao et al., 2002; West and
Grace, 2002); (2) Steady-state membrane potentials: DA inhibits
hyperpolarized neurons (down-state) and excites depolarized
ones (up-state) (Cepeda et al., 1998; Nicola et al., 2000; West and
Grace, 2002); and (3) Concentration: evoked concentrations of DA
in the range of 600 nM elicit excitation (Gonon, 1997) while
higher concentrations inhibit firing rates (Williams and Millar,
1990).
and Marsden, 1998; Brown, 2003; Lee et al., 2004; Sharott et al.,
2005). It also promotes a greater autonomy of BG neural
patterns from a strict cortical control, blocking the spread of
cortical synchronous oscillations into the BG (Marsden et al.,
2001; Brown, 2003; Priori et al., 2002; Williams et al., 2002;
Heimer et al., 2002; Cassidy et al., 2002; Goldberg et al., 2002;
Magill et al., 2004; Sharott et al., 2005) (Fig. 4A). Such network
effects may offer the best overall explanation of DA induced
psychobehavioral arousal (Steriade, 1996, 2000). Collectively,
local field potential studies support the hypothesis that DA
promotes the emergence of characteristic rhythms and their
diffusion in the brain:

(1) DA decreases the power and coherence of cortically
derived beta-frequency oscillations (∼15 Hz) and pro-
motes the emergence of high-frequency gamma os-
cillations (N60 Hz). The prevalence of beta rhythm in
BG–thalamocortical circuits is associated with motor
impairments characteristic of Parkinson's disease
(Deuschl et al., 2000; Vitek and Giroux, 2000; Brown,
2003; Dostrovsky and Bergman, 2004; Hutchison et al.,
2004).

(2) DA suppresses slow firing oscillations and regular burs-
ting of BG neurons (∼1 Hz) in anesthetized and sleeping
rats (Pan and Walters, 1988; MacLeod et al., 1990; Murer
et al., 1997; Tseng et al., 2000, 2001). Since rhythmic
bursts have been interpreted as the result of spreading
of cortical activity into BG nuclei, these changes may
reflect a barrier between cortex and BG.

(3) DA increases the multisecond temporal oscillatory pat-
terns (from ∼30 s to ∼ 10 s) of BG nuclei's spike trains
and increases the spectral power of these oscillations
(Ruskin et al., 1999, 2001, 2003).

The DA capacity to promote gamma rhythms needs
specific attention since these oscillatory waves are involved
in diverse behavioral and psychological processes, while their
alteration has been observed in neuropsychiatric disorders
(Herrmann and Demiralp, 2005). The generation of gamma
rhythms is essential for synaptic plasticity and memory
processes (Paulsen and Sejnoski, 2000; Buzsaki and Draguhn,
2004; Sederberg et al., 2007), voluntary movement execution
(Cassidy et al., 2002; Courtemanche et al., 2003; Kuhn et al.,
2004; Sharott et al., 2005), attentive functions (Brown, 2003)
and “binding of sensory object features into a coherent
conscious percept” (Engel and Singer, 2001). It has also been
suggested that gamma waves preside over the emergence of
active intentional brain states (Freeman, 2003), which underlie
all of the abovementioned functions.

In summary, the behavioral arousal function of ML-DA
transmissionmay be explained on the basis of a DA-promoted
emergence of high-frequency oscillations in BG–thalamocor-
tical circuits. According to this view, motivated behaviors do
not arise from cognitive signals activating executive motor
plans, but from instinctual behavioral and emotional drives
originating in midbrain and hypothalamic areas and commu-
nicated through DA within BG–thalamocortical circuits. We
will next explore the possibility that gamma rhythms favor
the release of specific neural activity patterns expressing in-
tentional behavioral dispositions.



Fig. 4 – DA-promoted BG activity patterns. Much evidence has shown that the release of DA into BG blocks the spreading
of cortical rhythms in BG structures (A). For example, DA inhibits cortically derived beta oscillatory patterns and promotes the
emergence of BG characteristic oscillatory patterns (in the gamma range) in BG–thalamocortical circuits (Brown and Marsden,
1998; Brown, 2003; Courtemanche et al., 2003; Magill et al., 2004; Lee et al., 2004; Sharott et al., 2005). The inhibitory function of
DA transmission on the spreading of cortical rhythms is mainlymediated by the activation of D2-type receptors (D2) since they
have an inhibitory role over descending glutamatergic transmission into BG areas (Nicola et al., 2000; West et al., 2003;
O'Donnell, 2003) (B). The consequent emergence of gamma and other BG rhythms may favor the release of neurodynamic
sequences and their diffusion in BG–thalamocortical circuits. On the other hand, transient activation of D1-type receptors
(D1) may have an excitatory function and seems to favor the entrance of specific and highly convergent cortical and limbic
information into BG (West et al., 2003; O'Donnell, 2003) (B). Those signals may control the release of neurodynamic sequences
in accordance with the representation of the organism–environment relationship. The global function of DA may then be
conceptualized as a widespread modulation favoring the elaboration of relevant cortico-limbic information into a BG
intentional code.

14 Massive, cortical, glutamatergic input to basal forebrain and
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4.3. DA effects on sequential neural activity patterns

It has been shown that GABA neural networks are involved in
the desynchronization of slow-wave oscillations (Sloviter,
1987) and in the promotion of high-frequency rhythmic
oscillations in the gamma band (Llinas et al., 1991; Steriade,
2000). GABAergic neurons also preside over the release of
repetitive sequential patterns (or neurodynamic sequences)
(Laurent, 2002; Lagier et al., 2004; Beggs and Plenz, 2003, 2004).
Capturing brain activity within dynamic attractors (Freeman,
2000, 2001, 2003; Lewis, 2005), the GABAergic basal forebrain
neurodynamic sequences direct activity consistent with the
sequence and constitute the intrinsic structure of intentional
behaviors and cognitions. Viewed as impulses to act, they
translate neural activity into the intentional code13 necessary
for active movements.

It is not known how GABAergic networks produce fast-
wave rhythms and sequential neural activity patterns or the
exact relationship between gamma rhythms and the release
of neurodynamic sequences. However, it is reasonable that
13 We refer to intentional code as the dynamic structure of the
neural activity produced in basal forebrain and basal ganglia
areas. The intrinsic organization of these areas evolved to favor
the emergence of sequential activity patterns that may be easily
translated in movements because of their procedural shape. In
other words those areas have been predisposed to release cohe-
rent sequences of movements.
ML-DA favors the release of basal forebrain neurodynamic
sequences reflected within fast-wave oscillatory gamma
rhythms. As demonstrated for gamma rhythms (Brown,
2003), optimal levels of DA are also important for the release
of neurodynamic sequences14 (Stewart and Plenz, 2006).

In classic theory of BG functions (Alexander et al., 1986;
Albin et al., 1989; Gerfen et al., 1990; Gerfen, 2000; Gurney et al.,
2001), DA transmission relieves thalamic and brainstemnuclei
from chronic inhibition by BG output nuclei. DA arousal is
supposed to emerge from a global increase in thalamocortical
activity, while the activity of BG output nuclei is considered
antikinetic. This view may be contradicted by evidence where
electrical stimulation of BG output nuclei relieves Parkinso-
nian symptoms (Hamani et al., 2006). BG output nuclei may
rather exert an antikinetic effect primarily when they oscillate
at low frequencies, but not when normal BG oscillatory
activity is restored through DA-facilitating medications or
BG nuclei blocks neurodynamic sequences through the reciproca
GABAergic connections characteristic of basal forebrain ensem-
bles. With a metaphor taken from Dante's Inferno, basal forebrain
neurons are like the damned souls of the envious kept in a
cauldron. They cannot escape because when “one does manage to
escape, the others pull him/her back in! And so the cauldron
closes itself” (Llinas, 2002, p. 138). However, when only a subset o
basal forebrain neurons receives excitation (and this effect may
be potentiated by DA transmission), a behavioral coheren
neurodynamic sequence is properly released.
l

f
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electrical stimulation15 (Garcia et al., 2005). Rather than con-
ceiving DA behavioral effects as a consequence of BG output
nuclei inhibition, we propose that DA transmission promotes
high-frequency oscillatory patterns (Fig. 4A) and the release of
BG neurodynamic sequences. The overall DA inhibition of
excitatory input, mainly mediated by D2-type receptors of the
indirect pathway of BG16 (Fig. 4B), reduces the diffusion of
cortical rhythms and promotes BG characteristic rhythms.17

On the other hand, acting upon D1 receptors of depolarized
striatal neurons belonging to the direct pathway, phasic DA
may increase their responsiveness to convergent descending
excitatory influences (Gerfen, 2000; Nicola et al., 2000; Murer et
al., 2002; West et al., 2003). This may promote the release of
neurodynamic sequences in accordance with specific infor-
mation coming from cortico-limbic structures (Fig. 4B). Con-
vergent glutamatergic input may thus form a switching signal
(Redgrave et al., 1999), allowing new information to enter basal
forebrain/BG areas and new sequential activity patterns to be
generated in BG–thalamocortical circuits. Consistent with this
view, an imbalance between phasic and tonic DA transmis-
sion may promote attention deficit hyperactivity disorders
(Levy, 2004) and probably also Tourette's syndrome. BG–
thalamocortical circuits of these subjects may be overcharged
by switching signals as external stimuli continuously release
new neurodynamic sequences. Conversely, excesses of BG
tonic DA transmissions may promote stereotypical behaviors
and obsessive-compulsive disorders (Korff and Harvey, 2006).
In these cases, the abnormal presence of tonic DA may com-
pletely suppress the influence that cortical and limbic areas
exert over subcortical nuclei, leading neurodynamic se-
quences to be produced autonomously and without any
input from the external environment.

4.4. ML-DA and the SEEKING neurodynamic sequences

Limbic neurodynamics in the ventral BG serve as vectors for
the expression of the SEEKING emotional disposition, trans-
lating a general arousal state into active exploration. They
are the neural bases of instinctual internalized movements or
action tendencies directed to actively investigate elements of
the external and in humans perhaps the internal (mental)
environment. SEEKING tendencies are comprised of specific
types of locomotor activities, associated autonomic changes,
and other responses directed to attain perceptual informa-
tion and to progressively orient the organism toward af-
fectively enticing and eventually desired sources of stimula-
15 The current interpretation of the therapeutic effects of deep
brain stimulation is that such electric currents disorganize and
block the activity of BG output nuclei. However, it is interesting to
note that the frequencies of such stimulations are around the
gamma range (∼100 Hz) (Garcia et al., 2005). Why not hypothesize
then that the deep brain stimulation is effective because it
restores basal ganglia characteristic oscillatory rhythms?
16 But partially also by D1-type receptors belonging to hyperpo-
larized neurons of the direct pathway (Nicola et al., 2000).
17 DA transmission tonically inhibits the entrance of glutama-
tergic descending input in BG areas either via D2-type receptors of
striatal neurons belonging to the indirect pathway or via D1-type
receptors of down-state, striatal neurons from the direct pathway
(Nicola et al., 2000).
tion (e.g., via whole body exploratory sequences, eye and
head movements, sensory-information sampling with con-
tinuous sniffing).

The SEEKING neurodynamic sequences presumably drive
motor-action pattern generators via connections from ventral
BG output to brainstemmotor nuclei. By integrating incoming
perceptual information into SEEKING action tendencies, the
organism may coordinate its relationship with the environ-
ment in flexible ways. Perceptual information from both
external and internal sources receives a preliminary evalua-
tion of its survival value as it enters the Nacc through limbic
structures like olfactory bulb, pFC, amygdala, and hippocam-
pus. The diffusion of SEEKING sequences in the BG–thalamo-
cortical circuits brings about exploration and approach to the
most prominent sources of positive affective stimulation.
Going beyond formal models (Schultz and Dickinson, 2000;
Waelti et al., 2001; Dickinson and Balleine, 2002; Schultz, 2004;
Niv et al., 2005), we think that the SEEKING neurodynamic
sequences are the procedural structures that concretely lead
organisms to move across landscapes of perceptual config-
urations. Instead of being processed in abstract algorithmic
computations, the rewarding value of external stimuli
depends on the ability to activate such instinctual psychobe-
havioral sequences. Raw emotional feeling may be highly
linked to the neurodynamics that generate instinctual emo-
tional behaviors. From this perspective, it is likely that posi-
tive emotional affects, such as DA facilitated euphoria,
emerge relatively directly from instinctual SEEKING dynamics
(Panksepp, 2005).

The SEEKING neurodynamic sequences in the limbic BG–
thalamocortical circuit interface continuously with other
neural activities. Therefore, the role of ML-DA transmission
in learning emerges when such neurodynamics intermesh
with other cognitive and perceptual representations (see
Lewis, 2005 for another elaboration of this type of view in
emotion theory). This forms a tight linkage between external
stimulus configurations and the SEEKINGurge, where external
environmental configurations gain the ability to activate
SEEKING sequences, acquiring incentive motivational value18

(via classical conditioning). When unexpected positive out-
comes (sensory pleasures) emerge for a behavior in a novel
environment, motor sequences that were stimulated by the
presence of rewards and reward-related stimuli become
linked to the SEEKING sequences. Discrete operant behavior
thereby becomes embedded progressively into ever narrowing
SEEKING sequences, connecting the original configurations of
stimuli to final reward configurations. Such behaviors even-
tually become habitual, and perhaps largely affectively
18 SEEKING neurodynamic sequences may simply promote
approach or operant behaviors via activation of motor routines.
By activating these sequences, external stimuli may acquire an
unconscious incentive value (Berridge, 2004). However, it is also
possible that SEEKING sequences actively contribute to the
emergence of positive hedonic state—not sensory pleasure but
euphoria. Indeed, hypothalamic and midbrain nuclei receive
abundant direct and indirect connections from the Nacc shell,
the ventral pallidum, and the pFC, and empirical data, such as
conditioned place preferences, indicate that all these brain
regions contribute to affective experiences (Panksepp, 2005).
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unconscious, when ML-DA arousal is no longer necessary to
activate appetitive SEEKING urges (Choi et al., 2005).

In summary, the neurodynamics of SEEKING sequences
within BG–thalamocortical circuits should be viewed as
essential neural integrative substrates for associative and
operant learning processes. As described in the next section,
considering the SEEKING disposition as the affective substrate
for appetitive learning could have profound implications in
understanding addictions.
19 The relevance given to associative learning overlaps the
emphasis on overt behavioral expression as the only appropriate
level of analysis. Drug addiction is now diagnosed exclusively on
the basis of observable “behavioral abnormalities” and is defined
“as a loss of control over drug use, or compulsive drug seeking and
taking despite adverse consequences” (Nestler, 2001b, p. 119). The
emotional aspects of addiction are typically underemphasized.
5. The ML-DA system in drug addiction

5.1. Current theories

Drug abuse has been defined as a chronically relapsing dis-
order, in which the addict experiences uncontrollable compul-
sion to take drugs, while the repertoire of behaviors not
related to drug seeking, taking and recovery declines drama-
tically (White, 2002). The development of addiction is attrib-
uted to the action of drugs in the brain (Leshner, 1997). Chronic
drug use causes permanent neural changes at many levels of
analysis, from molecular and cellular levels to neural circuits
(Hyman and Malenka, 2001; Everitt and Wolf, 2002; White,
2002; Nestler, 2004; Koob et al., 2004; Robinson and Kolb, 2004).
Activity of the ML-DA system represents a key aspect of the
chain of events that leads from a molecular action of drugs to
the establishment of compulsive habits. In fact, most com-
mon drugs of abuse stimulate the release of DA, which
modulates both their rewarding and the psychomotor arousal
effects (Wise and Bozarth, 1987; Di Chiara and Imperato, 1988;
White, 1996; Di Chiara, 1998). Permanent functional changes
in the ML system and in BG–thalamocortcal circuits, arising
from repetitive DA stimulation, are involved in the develop-
ment of compulsive drug-taking behaviors (Berke et al., 1998;
Robinson and Kolb, 1999; Nestler, 2001a, 2004; Hyman and
Malenka, 2001; Koob and Le Moal, 2001; Li et al., 2003; Kalivas
et al., 2003). Through the complex reorganization of brain
circuits, drugs gradually acquire a tremendous motivational
power as organisms become captivated by drug-related
activities.

Initial studies of drug abuse in the 1960–1970s considered
dependence as the cardinal feature of the disease. Depen-
dence is the physiological state of organisms necessitating
continuous drug intake to avoid withdrawal symptoms. In the
“opponent process theory”, Solomon (1977) proposed that
drug abuse arises substantially from homeostatic imbalance
caused by compensatory adaptations to chronic drug usage.
Concurrently, Panksepp and colleagues (1978, 1980) envi-
sioned that the natural negative emotional processes that
sustain drug addictions are related psychologically to the
separation-distress process that young animals exhibit when
isolated from their caretakers. In other words, endogenous
opioids mediate the rewards of social reunion, which is a
powerful evolutionary force for creating social bonds, and
hence addictive tendencies. Thus, much of drug abuse may
reflect self-medication to alleviate aversive feelings, partly
engendered by drug withdrawal (see Khantzian, 2003, with
commentaries). This perspective has also been adopted by
Koob and his coworkers who have sought to identify the neu-
rochemical processes directly involved in generating depen-
dence (Koob and Le Moal, 1997, 2001, 2005; Koob, 2003). As a
“hedonic homeostatic dysregulation”, drug abuse has a cyclic
and progressive nature and is characterized by a pathological
alteration of the reward state. As a result of ML-DA hypo-
functionality, the deficit in reward functioning throws organ-
isms into a “spiraling distress cycle” and drugs become
necessary to restore the normal homeostatic state (Koob and
Le Moal, 2001).

Criticism of the affective theory of drug abuse relates to the
presence of relapse episodes. Specifically, the affective-
homeostatic perspective fails to explain why “after prolonged
drug-free periods, well after the last withdrawal symptom has
receded, the risk of relapse, often precipitated by drug
associated cues, remains very high” (Hyman, 2005, p. 1414).
Moreover, in animal models, re-exposure to drugs or drug-
related stimuli reinstates drug-seeking behaviors more
strongly than withdrawal (Stewart and Wise, 1992). Relapse
is then interpreted as the result of unconscious associative
memories that, once activated, mechanistically drive the
behaviors of addicts without the involvement of any hedo-
nic-homeostatic process (Shaham et al., 2003). Such a conclu-
sion is not probable from the Panksepp et al. (1978, 1980)
analysis, where the neurological substrates of drug addiction
are strongly linked to the natural social–emotional reward
processes of animals that are always experienced at the
affective, if not cognitive, level.

In the neurocognitive behavioristic perspective, drugs act
on the neurochemical processes involved in the formation of
associative and procedural memories (Di Chiara, 1999; Berke
and Hyman, 2000; Nestler, 2002; Robbins and Everitt, 2002).
Addiction is thus viewed as a “pathological usurpation of the
mechanisms of reward-related learning” (Hyman, 2005). This
interpretation has received support from work showing many
common molecular pathways in addiction and memory
processes19 (Nestler, 2002; Hyman et al., 2006).

A widely heralded attempt to integrate this approach with
a motivational perspective argues that repetitive drug usage
causes a sensitization of the ML-DA system (see next para-
graph), which is involved in mediating the incentive salience
of external stimuli (Robinson and Berridge, 1993, 2000, 2003).
The attractiveness of drugs and drug-associated cues depends
on the capacity of those cues to activate a motivational
appetite (“wanting”) through the stimulation of the ML-DA
system. This theoretical perspective focuses on the influence
of the sensory and perceptual processes that regulate the
SEEKING urge and has had little to say about the emotional
characteristics of brain states. Moreover, a pure incentive
sensitization view might wrongly predict that addicts con-
sume less drugs as their system gets sensitized to it.
Namely, they are getting more effect from a smaller amount
of drug.
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5.2. The addiction cycle

One of the big problems in addiction studies concerns how
compulsive habits get established from the occasional use of
drugs. The process of sensitization is now considered a key
step in the addiction development cycle where repetitive drug
intake further enhances the desire to consume drugs and
further leads to uncontrollable urges. It has been shown that
previous drug use, especially that of psychostimulants, in-
creases locomotion, stereotypic responses (“behavioral sen-
sitization”), or the ML-DA response (“biochemical sensi-
tization”) to a subsequent acute dose of the same drug
(Vanderschuren and Kalivas, 2000; Sax and Strakowski, 2001;
Ungless et al., 2001). And this happens not just for drug
rewards, but a variety of natural rewards (Nocjar and Pank-
sepp, 2002), especially social ones (Nocjar and Panksepp, 2007).

The concept of sensitization was originally utilized to
describe the fact that the application of electrical stimuli in-
duces a “progressively excitable neuronal locus” showing an
enhanced sensitivity to subsequent application of the original
stimulus or associated cues (Goddard et al., 1969; Janowsky
et al., 1980). Since enhanced behavioral and ML-DA responses
to drugs correspond to the enhancement of rewarding proper-
ties, a study of sensitization should foster our understanding
of why drugs and drug-related stimuli acquire an increasing
motivational and incentive value (Robinson and Berridge,
1993, 2000; Morgan and Roberts, 2004).

Sensitized responsiveness to drugs often depends on parti-
cular stimuli and environmental conditions previously asso-
ciated with drug intake (Robinson and Berridge, 2000; Weiss
et al., 1989). “Context-dependent sensitization” can thus be
used to explore how drug-associated stimuli acquire their
incentive value. It also provides an explanation for the
phenomenon of relapse, where drug-associated memories
maintain the ability to activate the ML-DA system long after
the withdrawal has subsided (Shaham et al., 2003). On the
other hand, “context-independent sensitization” may reflect
the increasing ability of drugs to activate the ML-DA system,
without contributions from external stimuli (Patridge and
Schenk, 1999). In such cases, it is possible that the specific
response to the pharmacological action of drugs is potentiated
in some way or that the activity of the ML-DA system is
globally increased after drug use.

It has been shown that repetitive administration of psycho-
stimulants causes an increased activity of midbrain DA
neurons (White and Wang, 1984; Henry et al., 1989; Wolf
et al., 1993; Kalivas, 1995). Furthermore, molecular and cellular
adaptations responsible for a sensitized DA activity have been
found in the VTA (Vanderschuren and Kalivas, 2000; Kalivas
et al., 2003; Vezina, 2004; Borgland et al., 2004) or along DA
projections. A subsensitivity of D2 autoreceptors, which
inhibit DA cell firing, also exists after repeated drug usage
(White and Wang, 1984; Volkow et al., 2002a,b). Although a
general enhancement of ML-DA functions after chronic drug
treatment has been postulated (Robinson and Berridge, 2000;
Vezina, 2004), adequate evidence of enhanced ML-DA release
under basal testing conditions in chronically drugged animals
is missing. On the contrary, as predicted by the hedonic
homeostatic dysregulation hypothesis (Koob and Le Moal,
1997, 2001, 2005; Koob, 2003), a deficiency in ML-DA transmis-
sion and consequent motivational changes have been ob-
served after repetitive drug use (Parsons et al., 1991; Weiss et
al., 1992; Koob and Le Moal, 1997, 2005; Nestler, 2004).
Moreover, as already noted, it is difficult for ML-DA sensitiza-
tion theories to explain why the rewarding power of drugs is
enhanced, while natural rewards are commonly ignored by
human addicts.

In summary, two different and opposite molecular path-
ways activated by drugs have been discovered (Nestler, 2004),
which are being related to the experience-dependent motiva-
tional power of drugs. On one hand, compensatory adapta-
tions responsible for a decreased ML-DA functioning induce
motivational impairments and loss of interest in activities
not associated with drug consumption (Koob and Le Moal,
1997, 2001; Nestler, 2001b; Volkow et al., 2005b; Barrot et al.,
2002; Aston-Jones and Harris, 2004). On the other hand,
changes responsible for a sensitized DA responsiveness to
drug and drug-related stimuli (Vanderschuren and Kalivas,
2000; Nestler, 2002, 2004) may lead drug-related memories to
acquire an increasing motivational value (Robinson and
Berridge, 2000).

5.3. The affective neuroethological perspective of addiction

Like the affective-homeostatic perspective of Koob and his
coworkers, our view is centered on naturally occurring
internal affective states. We have envisioned how natural
“social reward” chemicals, such as endogenous opioids, par-
ticipate in addictive urges (Panksepp, 1981b; Panksepp et al.,
2004). However, affectivity in our view is conceptualized not
only as a result of homeostatic self-regulatory processes, but
also of basic intention-in-action type emotional dispositions
(Panksepp, 1998, 2003, 2005). Compared with the “psychomo-
tor stimulant theory” (Wise and Bozarth, 1987) and with the
“incentive-sensitization theory” of addiction (Robinson and
Berridge, 2000), our perspective attempts to specify that the
appetitive motivational component stimulated by drugs is an
ancestral emotional urge (the SEEKING disposition) regulated
by DA transmission and characterized by specific neurody-
namic patterns along ventral striatum and ventral BG–
thalamocortical circuits. Moreover, this emotion is character-
ized by neural, behavioral and affective components linked
together in complex and synchronized ways.

According to this perspective, drugs of abuse, especially
psychostimulants, provide an artificial way to stimulate the
emergence of the SEEKING disposition, through which moti-
vated behavior is normally expressed and certain positive
affective feelings, such as the euphoria and exhilaration of
exploration and reward pursuit, arise. The role of the SEEKING
disposition in mediating drug reward is indicated by the
similarity between the unconditioned effects of drugs and
those of novelty. Novelty may be considered the uncondi-
tioned stimulus to which the SEEKING system is naturally
predisposed to react (explaining why novelty promotes explo-
ration), while drugs activate the same system in a pharmaco-
logical way. Interestingly, novel environments enhance the
rewarding and psychomotor activating properties of drugs,
leading to environment specific sensitization (Badiani et al.,
1995a, 1998; Badiani and Robinson, 2004). From our point of
view, the disposition to seek and explore, already active in the
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presence of novelty, is further activated by drugs, creating an
amplified effect.20

Strong associative memories between the SEEKING dis-
position and drug-related stimuli create the neural conditions
for drugs to progressively increase their incentive value.
Indeed, in this view, drug-related memories push organisms
to consume drugs primarily by activating the SEEKING emo-
tional disposition (at least at the first stages of the addiction
process). The involvement of the SEEKING disposition in the
first stages of addiction is consistent with evidence that
sensitization arising from repeated drug injections not only
promotes the establishment of drug-seeking behaviors, but
also increases the vigor of normal motivational, non-drug-
related activities, such as a pursuit of sexual and food rewards
in rats (Nocjar and Panksepp, 2002, 2007; Panksepp et al., 2004).

Molecular, cellular and synaptic learning processes stimu-
lated by drugs could be related to the emergence of the
SEEKING disposition, in the way we think this disposition is
manifested at the whole brain/mind level (as neurodynamic
patterns emerging into ventral BG and spreading into BG–
thalamocortical circuits). It seems unlikely to us that mole-
cular and cellular adaptations observed after drug use
correspond to the storage of specific information into a linear
input-to-output way of processing (Fig. 5A). To the contrary,
we think that those brain changes more likely affect the way
global reverberatory activity patterns within BG–thalamocor-
tical circuits are generated, how they are supported by ML-DA
transmission, and how they are related to incoming activity
elaborated through the rest of the brain. We envision the
SEEKING neurodynamics being the affective-action centered
functional structures, whereby drug-related memories and
drug-seeking behaviors become linked together (Fig. 5B).

The abnormal and continuous activation of the SEEKING
disposition by drugs is also responsible for the consolidation
of compulsive habits, when behavioral routines to find and
consume drugs become part of epigenetic changes in the
SEEKING dispositions (Ikemoto and Panksepp, 1999). We can
imagine that SEEKING neurodynamics activated in ventral BG
by drug-associated memories are progressively transformed
into behavioral sequences associated with compulsive habits
and expressed habitually in dorsal BG circuitry. In such cases,
addicts may no longer seek drugs not just because of
subjectively experienced elevated desire and euphoria but
because of the power of automatically expressed habitual
stereotypical compulsive behaviors (that are also well suited
to effectively alleviate withdrawal distress).
20 Commonalities between novelty and drug reward explain why
addiction is so pervasive and difficult to stop. Indeed, if natural
rewards activate the ML-DA system in unpredictable and novel
situations, a DA-induced activation of the SEEKING urge will help
the animal to both achieve its goal and to learn from its current
experiences. As environments become increasingly familiar, the
SEEKING disposition is not activated as intensely. However, drugs
of abuse will continue to activate the ML-DA system pharmaco-
logically even in familiar situations, bringing about the experi-
ence of novelty and of its associated euphoric effects. This
process will cause repetitive and abnormal learning until the
motivational and behavioral repertoire of an organism becomes
thoroughly captivated by drug-related activities.
A novel feature of this model is that it offers some unique
unconditional indicators of SEEKING urges for monitoring
drug desire and craving independently of formal conditioning
paradigms (Panksepp et al., 2002, 2004). For instance, rat
vocalizations may serve as an instinctual “self-report” of
appetitive drug desire or aversion since rats exhibit more
50 kHz ultrasonic vocalizations (USVs) when returned to envi-
ronments in which they received rewarding drugs and more
22 kHz USVs when returned to environments in which they
received aversive drugs (Burgdorf et al., 2001a). Indeed, the
50 kHz USV system is intimately related to ascending brain DA
networks (Burgdorf and Panksepp, 2006; Burgdorf et al., 2007),
and the placement of amphetamine directly into the Nacc,
especially the shell region, effectively promotes 50 kHz USVs
(Burgdorf et al., 2001b; Thompson et al., 2006). Such affective
vocalizationsmay be capable of being used to track fluctuating
affective changes during various phases of the addiction cycle
(Panksepp et al., 2002, 2004).

As highlighted in the next paragraph, the affective neuro-
ethological perspective provides a new way of envisioning
individual vulnerability to psychostimulant addictions and
perhaps other drugs as well. An ethological description of
normal SEEKING behavior, together with the knowledge of the
neural circuits involved in other emotions (Panksepp, 1998),
especially negative ones such as social separation distress
(Panksepp, 1981a,b), permits a conceptualization of addiction
vulnerability as the consequence of the cascade of natural but
specific emotional-affective liabilities. In particular, a deficit in
the ML-DA may lead individuals to become compulsive drug
consumers, by promoting an enhanced ML-DA responsive-
ness to drugs. In other words, drugs will acquire an enhanced
euphoria-producing (rewarding) power since the hypofunc-
tional DA system is characterized by a deficient development
of self-inhibitory mechanisms that usually counteract the
neurochemical effects of drugs.

5.4. Individual vulnerability

An important issue in drug abuse research concernswhy some
individuals develop vigorous compulsive drug use after mo-
dest consumption of drugs. Human family studies demon-
strate that addictive vulnerability is influenced both by genes
and environmental conditions (Uhl, 1999, 2002; True et al.,
1999; Vanyukov and Tarter, 2000). Similarly, individual vulner-
ability to drug abuse in animal models depends on both
genetic (Carney et al., 1991; Belknap et al., 1993a,b; Meliska et
al., 1995) and environmental risk factors for addiction (Bowling
et al., 1993; Bowling and Bardo, 1994; Cabib et al., 2000; De Jong
and de Kloet, 2004; Nader and Czoty, 2005).

It has been demonstrated that vulnerable animals show
higher locomotor and exploratory activity in novel environ-
ments (Piazza et al., 1989; Rouge-Pont et al., 1993; Deroche
et al., 1995; Grimm and See, 1997; Pierre and Vezina, 1997;
Kabbaj et al., 2000; Marinelli and White, 2000; Shimosato and
Watanabe, 2003; Orsini et al., 2004). Because of their pre-
ference for novel environments (Dellu et al., 1996; Stansfield
et al., 2004), they have been described as novelty seekers
(Bardo et al., 1996; Klebaur and Bardo, 1999) and compared to
human sensation seekers, namely individuals characterized
by lower levels of internal arousal who are strongly attracted



Fig. 5 – The process of drug addiction development. In the neurocognitive behavioristic perspective, addiction has been
explained as the consequence of drug-induced brain adaptations “stamping” specific associative memories in neural circuits
(A). The over-representation of drug-related memories should be caused by synaptic modifications connecting cortico-limbic
areas (involved in the representation of motivationally relevant stimuli) to BG areas (involved in the expression of motivated
and intentional behaviors). The flow of activity through which compulsive memories are expressed is a linear input–output
way of processing, while the ML-DA transmission (especially into the Nacc) is supposed to be particularly important in the
drug-induced reinforcement process. The affective neuroethological perspective advancedhere diverges from the previous one in
considering the drug-induced activation of the SEEKING emotional disposition as the cardinal element in the formation of those
memories that make drugs and drug-related stimuli alwaysmore attractive (B). In particular, we think that ML-DA release after
drug intake facilitates the emergence of specific neurodynamic sequences along the BG–thalamocortical circuits, which
constitute the patterns through which the SEEKING disposition is expressed at the neural level. Once generated, these
sequences match the representations of specific information about the environment (which are elaborated in
BG–thalamocortical circuits and related structures). In line with the “Hebbian” dynamic conception of synaptic plasticity, we
think that the match between SEEKING sequences and drug-related memories permanently modifies the functional
organization of the brain (from the molecular to the systemic level). Therefore, the cascade of neuroadaptations observed after
drug use (from molecular to cellular level) represents the tendency of the SEEKING disposition to be activated by drug-related
memories and expressed through drug-seeking behaviors.
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to intense sources of stimulation (Zuckerman, 1990; Dellu
et al., 1996). In accordance with such views, vulnerability to
addiction has been seen as the result of an endogenous
deficiency in the reward state and, more specifically, in the
ML-DA functioning. Indeed, in laboratory animals, low basal
levels of ML-DA are related to drug-seeking behaviors, either
in individuals with genetic- and history-induced vulnerabil-
ities (Kellogg, 1976; Kempf et al., 1976; Nestler, 1993; George
et al., 1995; Gardner, 1999; Misra and Pandey, 2003) or in acute
withdrawal from drugs (Parsons et al., 1991; Weiss et al., 1992).
In an attempt to maintain “optimal levels of arousal” (Hebb,
1955), individuals with a lower endogenous DA transmission
may be preferentially attracted to the hedonic effects of drug-
promoted arousal of the ML-DA system since drugs may
constitute a way to compensate for endogenous arousal
deficits and to pharmacologically increase internal levels of
activation. On the other hand, since positive affective states
are influenced by arousal following an inverted-U shaped
function, drugs of abusemay constitute an excessive source of
stimulation for individuals with higher basal levels of arousal,
generating unpleasant states in them. Therefore, the “self-
medication hypothesis” (Markou et al., 1998; Khantzian, 2003)
and the “reward deficiency hypothesis” (Comings and Blum,
2000) look at drug-taking behaviors as instruments of self-
regulation and thereby emphasize the relevance of affective
feelings as signals of addiction relevant internal states.

Criticism against these theories of vulnerability came from
studies showing that novelty- and drug-seeking rats are cha-
racterized by overactive ML-DA neurons (Marinelli andWhite,
2000; Vezina, 2004). Indeed, rats selected for high responsive-
ness to novelty and psychostimulants (high responders, HR)
present an increased firing and bursting activity of ML-DA
neurons in basal conditions (Marinelli andWhite, 2000). These
findings have been considered strong evidence for an endo-
genous sensitization of the ML-DA system. Such endogenous
sensitization has been attributed to a potentiation of synapses
connecting glutamatergic excitatory projections and DA
neurons in the VTA and has been suggested as the cause for
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increased activating and rewarding properties of novelty and
drugs. Indeed, animals that are more vulnerable to developing
drug self-administration show higher levels of behavioral
activation after drug intake (Piazza et al., 1989). This effect is
explained by a greater drug response in the ML-DA system of
these individuals (Bradberry et al., 1991; Hooks et al., 1992;
Rouge-Pont et al., 1993; Piazza and Le Moal, 1996; Zocchi et al.,
1998; Robinson and Berridge, 2000).

A challenge to the endogenous sensitization hypothesis
has emerged from experiments in which high responding rats
have a slower rate of DA release and uptake in the Nacc com-
pared with low responders (Chefer et al., 2003). The greater
electrical activity of DA neurons (Marinelli and White, 2000)
thus correlates with a less rapid DA transmission in projection
areas21 (Chefer et al., 2003). Since DA influences the respon-
siveness of ML cells to external input, low DA levels should be
accompanied by a prevalence of glutamatergic transmission
and a hyper-excitability of DA neurons to glutamate. Indeed,
DA usually reduces the amount of glutamate released or the
intensity of glutamate-evoked cell firing (Siggins, 1978; Dray,
1980; Yim and Mogenson, 1982, 1986; Bradley et al., 1987;
Maura et al., 1988; Harsing and Vizi, 1991). The prevalence of
glutamatergic transmission in the VTA and higher ML-related
regions may also cause the spreading of slow-wave cortical
rhythms into the midbrain and BG. The increased bursting
activity of DA neurons (Marinelli andWhite, 2000)may then be
caused by a deficiency in DA transmission andmay arise from
the diffusion of cortical synchronized activity, as manifested
in animals treated with chloral hydrate (Steinfels et al., 1981)
and in BG output nuclei of Parkinsonian patients22 (Wichmann
and DeLong, 2003).

If the ML-DA deficiency is one predisposing factor in ad-
diction vulnerability,23 it is also true that sensitivity to the
rewarding effects of drugs forms a key component (De Wit
et al., 1986; Seale and Carney, 1991; O'Brien et al., 1986;
Brunelle et al., 2004; Uhl, 2004). Therefore, it remains to be
established why individuals with a blunted ML-DA transmis-
sion should present an enhanced ML-DA response to drugs
and novelty. An important consequence of endogenous DA
hypofunctionality is the reduced expression of neuronal self-
inhibitory mechanisms in the ML system. Vulnerable indivi-
duals, after drug experiences, show fewer or less functional D2
autoreceptors (White and Wang, 1984; Cabib et al., 2002;
Volkow et al., 2002a,b; Nader and Czoty, 2005). Mice of the C57
21 It is interesting to note that the same paradoxical correlation is
present in animals chronically treated with drugs.
22 On the other side, GABA projections into the VTA exert a
general inhibition on DA cell firing (Hyland et al., 2002). Keeping
the DA neurons in a hyperpolarized state, GABA inputs permit the
progressive accumulation of DA molecules in the presynaptic
vescicles and the increase of quanta of DA released per impulse.
Moreover, GABA transmission promotes the emergence and the
diffusion of basal forebrain and BG oscillatory rhythms. Under
GABA control, the ML system may then be regulated by those
neurodynamic patterns forming the procedural structure of
intentional behaviors.
23 Although the existence of an endogenous hypofunctionality of
ML-DA transmission is considered the first link in the chain, it is
not clear where this deficit arises. It is easy to speculate that it
may have developmental origins, based either upon genetic or
environmental factors.
strain (the addiction vulnerable phenotype) not only show
lower levels of D2 autoreceptors in the VTA (Puglisi-Allegra
and Cabib, 1997), but also a reduced concentration of DA
transporter proteins (DAT) responsible for the re-uptake of
extracellular DA in ventral striatal areas (Janowsky et al.,
2001). Maternally separated rats, which aremore vulnerable to
addiction, exhibit lower levels of DAT in adulthood compared
with controls, with direct implications for greater responsive-
ness to drugs and stress (Meaney et al., 2002). On the other
hand, socially dominant monkeys present higher levels of D2
receptors, protecting them against the rewarding effects of
cocaine (Morgan et al., 2002). It has also been shown that the
pFC DA response to amphetamine in the C57 “vulnerable”
mice strain is considerably lower compared with that of the
DBA addiction “resistant” mice strain (Ventura et al., 2004),
and prefrontal DA transmission exerts an inhibitory control
over DA release in ventral striatal areas (Deutch et al., 1990;
Karreman and Moghaddam, 1996; King et al., 1997; Wilkinson,
1997; Jentsch et al., 1988; Ventura et al., 2002).

In summary, the lower expression or functionality of self-
inhibitory processes in theML systemmay compensate for the
endogenous hypofunctionality of ML-DA transmission.
Although basal levels of DA are restored, the ML-DA system
will become less capable of self-regulating its own activity. In
situations where unusual stimuli, such as drugs of abuse or
novel environments, induce a consistent release of DA into
the Nacc and related basal forebrain regions, the deficiencies
in the inhibitory mechanisms in the ML system will cause ab-
normally elevated DA responses. Therefore, vulnerable indi-
viduals may experience greater rewarding effects of drugs
partly, we would propose, due to a higher activation of the
SEEKING emotional disposition.

When the system “crashes” because effective reward-
seeking is thwarted, animals exhibit depressive responses
partly because of the emerging dysphoria producing dom-
inance of dynorphinergic tone over the wholeML-DA SEEKING
apparatus (Nestler and Carlezon, 2006). Although we have not
focused on this aspect of the ML-DA seeking urge, it would be
predicted that kappa receptor antagonists might not only be
excellent antidepressants but they will tend to restore
SEEKING urges in the behaviorally dysfunctional syndrome
of clinical depression. Most other theoretical perspectives of
the ML-DA functions, especially the neurocognitive “teaching
signal” views, might have difficulty generating comparably
straightforward predictions.
6. Conclusion

The analysis of ML-DA functions has become an enormous
field of inquiry, and new findings and theoretical interpreta-
tions are emerging at a steady pace. As this paper was com-
pleted, a whole issue of the journal “Psychopharmacology”
(2007, vol. 191, issue 3) appeared that was dedicated to the
topic. There is no need to modify our position with respect to
the cornucopia of these additional perspectives, which are
mostly elaborations of previous positions. We would simply
highlight that the view advanced here is one of the earliest
and most holistic attempts to conceptualize how trans-
hypothalamic reward circuitry, energized by the ML-DA
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system, energizes a coherent organismic response to the
world (Panksepp, 1981a,b to Panksepp and Moskal, in press). It
can readily accommodate and be synergistic with many of the
more specific views that exist in abundance in the literature.

Many theories of ML-DA still envision this system partici-
pating in goal-directed behaviors in relatively passive cogni-
tive ways, such as “reward prediction error”, which do not
clearly envision or recognize the energetic psychobehavioral
states this system mediates. Those alternative views remain
encumbered by the failure to sift correlates from causes. Most
eletrophysiological studies have been characterizing what DA
neurons are listening to, truly a wide array of information,
rather than what these systems are passing on in the global
regulation of behavioral states (Panksepp, 2005). In our affect-
iveneuroethological perspective, theML-DA is part of a general
purpose appetitive foraging system (the SEEKING system) that
allows animals to become acquainted with the diverse confi-
gurations and rewards of their environments and thereby es-
tablish realistic and adaptive expectations. This system, per-
haps somesubcomponentsmore thanothers, alsoparticipates
in protecting animals against the vicissitudes of their world
(punishing contingencies) by promoting the seeking of safety.

Our view openly acknowledges affective psychological
changes, which emerge from related, but poorly understood,
emotional network functions (Panksepp, 2005). In its primal
form the ML-DA-SEEKING system can generate a special kind
of positive affect that is characterized by a euphoric engage-
ment with the world. To the extent that we can define the
normal range of arousal of this system, we would suggest that
it routinely tends to promote an affectively positive engage-
ment with the world, even though it may not be able to
completely counteract a negative affective state that has been
concurrently aroused by various punishing events that require
the seeking of safety. It is also likely that excessive arousal of
this system may be experienced as affectively extreme,
leading to feelings such as cravings and excessive feelings of
urgency.

We have hardly touched upon the human brain imaging
data that are beginning to highlight how important this sys-
tem is in all varieties of appetitive human motivation, from
the excitement of anticipating monetary rewards (Breiter
et al., 2001; Knutson et al., 2002) to the delights of love (Fisher
et al., 2006) and music (Blood and Zatorre, 2001). These issues
have been well reviewed elsewhere (Knutson and Wimmer,
2007) and generally support the long-standing thesis that has
been updated and mechanistically developed here. Indeed,
some of the newwave of “neuroeconomic” brain imaging goes
back to animal work affirming the appetitive nature of some of
the spontaneous signs of ML-DA arousal, such a 50 kHz
ultrasonic vocalizations (USVs) in rats (Knutson et al., 2002).
This vocal index of positive social engagement, especially the
“frequency modulated” (FM) variety, is strongly affected by
ML-DA dynamics (Burgdorf et al., 2001a,b, 2007). Another,
putative direct index of the arousal of this SEEKING system in
rats is the appetitive invigoration of sniffing (Clark and
Trowill, 1971) and this measure exhibits spontaneous tem-
poral conditioning that helps explain why animals behave the
way they do (i.e., exhibit scalloped, expectancy-type, operant
responding) on fixed-interval schedules of reinforcement
(Panksepp, 1981a,b, 1998). Thus, we have at least three mea-
sures of spontaneous arousability of the SEEKING urge in
rodents: (i) sniffing, (ii) 50 kHz FM USVs, and (iii) general ex-
ploratory-foraging activities. Such unconditional indices,
above and beyond DA release, should help us better char-
acterize how the SEEKING disposition helps various behavior
patterns become part of the learned repertoires of animals –
both “realistic” and “delusional” – as the brains of organisms
try tomake causal sense of the correlated events towhich they
are exposed.

Many modern theories of ML-DA function still reflect the
old battles between behaviorists and ethologists (Burkhardt,
2005). Obviously, the two views must work together, and they
need to be integrated into a seamlesswhole. However, it needs
to be reaffirmed that, as an initial step, organisms do have
certain complex behavioral abilities before those abilities get
restructured and channeled by learning. In its primal form, the
ML-DA energized brain SEEKING system provides a “goad
without a goal” (Panksepp, 1971), promoting the emergence of
specific neurodynamic sequences first associated with ins-
tinctual exploratory and with learning, appetitive-approach
patterns. Thereby DA transmission rapidly becomes enme-
shed in all varieties of object relations that allow animals to
effectively pursue all exteroceptively detectable resources
needed for survival.

Several recent publications exhibit a growing interest in
integrating dorsal BG-DA and ventral BG-DA behavioral
functions (Robbins and Everitt, 2007; Nicola, 2007). Unfortu-
nately, only single-neuron electrophysiological findings are
presented as new empirical evidence without consideration of
global-field dynamics studies that first revealed their useful-
ness in understanding Parkinson's disease. Most of the work
in the field is still motivated by computational views of ML-DA
functions (see Phillips et al., 2007; Nicola, 2007; Phillips et al.,
2007), focusing largely “on a role of phasic dopamine in
controlling the discrete selection between different actions”
(Niv et al., 2007). Moreover, such views have difficulty
specifying which kinds of actions are modulated by ML-DA
since there is no evidence that “stimulus-evoked firing of DA
neurons encodes specific movements” (Nicola, 2007). Such
important questions recur in many of the most recent theo-
retical papers. How the behavioral activating effect of DAmay
be translated into specific motor patterns? Which kinds of
actions are represented in the Nacc and other ventral BG
areas? How are such actions adaptive in novel environments?

In our affective neuroethological perspective, the activat-
ing effects of DA are translated into instinctual (i.e., uncondi-
tioned) action tendencies, psychobehaviorally represented in
ventral BG–thalamocortical circuits, since DA-promoted high-
frequency rhythms facilitate the release of SEEKING neurody-
namic sequences. Such sequences lead to explicit orienting,
seeking and approaching movements when coupled with
various external stimulus representations that have been
experienced in the context of reward acquisitions. Our model
integrates dorsal and ventral BG-DA functions in a new way
since we considered the procedural routines represented in
dorsal BG as learned subsequences of the SEEKING disposition
that have become habitual (also see discussion in Ikemoto and
Panksepp, 1999). Therefore, in novel and unpredictable
environments, instinctual actions of exploration and ap-
proach to previously uninvestigated stimuli prevail, while in
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well-learned situations those patterns are no longer needed
(i.e., functional) and instinctual habitual sequences, reflecting
more predictable and linear input–output relations, elaborated
by dorsal BG circuits, prevail.24 It is noteworthy that the latter
patterns are more unconscious than the affectively rich
SEEKING patterns elaborated by the more medial, and hence
evolutionarily more ancient, ML-DA circuits.
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