Winning the Accuracy Game

Three statistical strategies—replicating, blocking and modeling—can help
scientists improve accuracy and accelerate progress

Hugh G. Gauch, Jr.

homas Edison famously stated

that genius is “one percent in-
spiration and ninety-nine percent
perspiration.” In crop science, as in
many other fields of research, inves-
tigators find much truth in this prov-
erb. The discovery of an improved
variety of corn, wheat or soybeans
is very much a numbers game. The
standard varieties already incorpo-
rate many genetic refinements from

monumental breeding efforts in the
past. Improvements come in small in-
crements from testing large numbers
of experimental genotypes. Other
sciences have analogous challenges:
In pharmaceutical research, for ex-
ample, many compounds must be
screened to find one that might make
a successful medicine.

However, measurement errors or
chance variations can cause an infe-

rior plant to look better than a supe-
rior one. In a large field of contend-
ers, the superior breed can get lost in
the crowd. Scientists are aware of this
problem, of course, but they routinely
underestimate its severity.

Several years ago, | analyzed a trial
of seven varieties of soybeans. The va-
riety that appeared to be best was 14
percent better than the average of the
other six, and 3 percent better than its
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Figure 1. How can one identify the best cancer drug, safest automotive design or highest-yielding crop variety? Three statistical strategies can
increase success in selecting the best treatment or entry: replicating, blocking and the oft-neglected strategy of modeling. The high-quality
turfgrass needed for home lawns and elite golf courses such as this Donald Ross-designed course at the Grove Park Inn in Asheville, North
Carolina, has emerged from scientific screening of hundreds of experimental and commercial varieties.
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Figure 2. Sir Ronald A. Fisher, shown calculating at left, made Rothamsted Experimental Station in England the proving ground for major
statistical techniques used in science today. He established the importance of randomization and of replication—doing an experiment over
and over again—to increase accuracy. The table and graph show how the probability of replication successfully helping accuracy, despite noisy
data, grows with the number of replications. Although the first few replications pay off handsomely, the rewards fall off rapidly. (Photograph
by A. Barrington-Brown, republished by permission of the R. A. Fisher Memorial Trust.)

closest rival. Suppose these numbers
accurately reflected its superiority,
and the experiment were replicated.
Would the same soybean necessarily
come out on top? C»urprmnglv, simula-
tions showed only a 49 percent prob-
ability that it would; the fourth-best or
worse entry would win 10 percent of
the time.

The odds in favor of selecting the
best breed (or pharmaceutical com-
pound, or product-safety modifica-
tion) improve, of course, if the ex-
periment is replicated more times.
Replication decreases the effect of
chance variation, thereby improving
accuracy, efficiency and repeatability.
But in the numbers game, this way of
achieving accuracy comes at a severe
cost. The more times breeders have to
run the same experiment, the fewer
alternative breeds they can test.

Fortunately, more replication—or
more perspiration, to recall Edison’s
dictum—is not the only way to im-
prove accuracy. A small investment on
the “inspiration” side can make a very
large difference. Two other strategies,
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called blocking and modeling, can pro-
vide at least one replication’s worth of
accuracy (and often more) at almost
no cost. Blocking is a method of ex-
perimental design that reduces the ef-
fects of chance errors. It has become
routine in the development of better
medicines, safer cars, stronger steels
and a host of other applications.
Modeling to gain accuracy is much
less familiar to practicing scientists,
even though it is frequently applicable
and usually improves experimental
accuracy more than blocking does.
The idea behind it dates back, in some
sense, to the medieval master of parsi-
mony, William of Ockham. Scientific
data always contain a mixture of signal
and noise; the scientist’s job is to dis-
cern the signal. It almost always shows
up as patterns that are inherently sim-
pler than the noise. Noise is idiosyn-
cratic and complex; the reasons why a
particular corn plant produced more
grain than the one next to it are often
unknowable. But signal is simpler; a
single environmental difference may
cause dozens of breeds to respond sim-
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ilarly. Modeling is a way of amplifying
the srgnal by plaung greater weight on
simple patterns in the data.

Different sciences and different ex-
periments vary widely in the amount
of accuracy thev can attain. In physics,
the gyromagnetic ratio of the electron
has been measured to 11 significant
digits. Many quantities in science and
industry are readily measured to three
to six significant digits. The data I
work with in breeding trials carry only
one significant digit. Nevertheless, ev-
ery science shares the need for greater
accuracy. Gains in accuracy translate
to safer products, more effective medi-
cines and more food on the world’s
tables. Accuracy matters.

The Limitations of Replication
In 1919, a 29-year-old statistician
named Ronald A. Fisher started a new
job at Rothamsted Experimental Sta-
tion in Harpenden, England. It was the
premier agricultural research site in
the country and would become, thanks
to Fisher’s efforts, the proving ground
for many of the statistical techniques
that scientists take for granted today.
Fisher was hired to make some sense
out of 76 vears of experimental records,
which he later called a “muck heap.”
Why were the data at Rothamsted
such a mess? In the 19th century, sci-
entists had little conception of the
importance of replication. Frequently
the productivity of a given breed in a
given year would be represented by
a single measurement. With only one




observation, as scientists now know,
it would have been impossible to esti-
mate the amount of error, and therefore
impossible to make any meaningful
comparisons between measurements.
It was hard to know which results to
take seriously.

Inaccuracy or error is quantified by
two familiar descriptive statistics. The
standard deviation is the square root of
the mean square error of all the indi-
vidual observations. (Error is the ob-
served value minus the true value.
Since true values are not known, aver-
ages over replications are used in error
calculations.) The standard error is the
root mean square error for an aver-
age over N replicates, which equals
the standard deviation divided by the
square root of N.

Replication is one of the finest ideas
in the history of science, but it faces
a severe law of diminishing returns.
Halving the standard error requires
a fourfold increase from one to four
replications. The next several halvings
require 16, 64, 256 and 1,024 replica-
tions, which rapidly become prohibi-
tively expensive. Scientists are familiar
with this square-root dependency and
the diminishing returns that follow as
a consequence.

A second shortcoming of replication
is far less well known. It becomes ap-
parent when one compares the suc-
cess rate of replicated and unreplicat-
ed measurements in estimating true
values. Obviously, scientists prefer an
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average of two replicates to a single
unreplicated observation because the
former is likely to be more accurate.
But that does not mean it will always
be more accurate. Just by chance, the
first replicate may be quite close to the
true value, while the second replicate
is far from it. In that case, the average
of the two replicates is less accurate
than the unreplicated result.

The reader might like to ponder the
following three questions before going
on. How often is the average of two
replicates more accurate than a single
measurement? How about the average
of five replicates? And how many repli-
cates would be needed to achieve 90 or
95 percent confidence that the average
is more accurate than the unreplicated
measurement? Curiously and regret-
tably, few scientists know the answers
to these practical questions.

Here are the answers, based on the
ordinary assumption that measure-
ment errors are distributed accord-
ing to a “bell-shaped curve.” Two
replicates are more accurate than one
60.8 percent of the time. For five rep-
licates, the success rate climbs to 73.2
percent—but this means that a single
observation is still more accurate 26.8
percent of the time. To increase rep-
lication’s success rate to 90 percent,
most scientists | have spoken with
guess that three to eight replicates
would be sufficient. In fact, the actual
number is 40. To achieve 95 percent
success, a daunting 162 replicates are
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required, again far beyond what most
scientists would expect.

Of course, the lesson here is not that
scientists should always replicate their
experiments 40 or 162 times. Instead,
they should develop realistic expecta-
tions about what replication can and
cannot accomplish.

A related problem, which I alluded
to in the introduction, emerges when
scientists face a selection task. In medi-
cal research, it is common to perform
an experiment in order to select the
best treatment. Again, it is obvious that
greater accuracy will improve the suc-
cess rate of the best-treatment selec-
tion. But when this simple insight is
informed by concrete numbers, most
scientists are surprised by the diffi-
culty of selection tasks, and hence the
importance of using all the available
strategies to gain accuracy.

Consider the simplest selection sce-
nario. An experiment has T inferior
treatments and one superior treatment.
All of the inferior treatments have the
same average effect. What is the prob-
ability that the experiment will cor-
rectly identify the superior treatment,
despite noisy data? A field called order
statistics answers such questions.

For instance, for T=10, the best of
the observed values for the inferior
treatments is likely to be 1.54 standard
errors above the mean. If the superior
treatment is only one standard error
better than its rivals, it does not have
a good chance of winning, merely 32.4
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Figure 3. Experimental data have both signal and noise components, the former attributable to imposed treatments and the latter arising from
uncontrolled factors. In a simulated experiment, ten treatments, A through ], have equal true effectiveness. Entry K meanwhile is superior by one
unit (one standard error). Random noise is added to each treatment following a standard normal distribution with a standard deviation of one
unit. Entry K appears to rank third, when it is actually best—a typical outcome, since the simulation shows that on average 2.4 inferior treatments
surpass the best treatment. Noise hinders the search for the best treatment.
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completely randomized

percent. Yet in many actual experi-
ments the odds are even worse. Real-
istic tasks, including many in desper-
ately important medical research, often
involve hundreds of competitors and
small margins of superiority.

Suppose now that the number of
replications were increased by a factor
of four. This would halve the standard
error of the estimated effects. The dif-
ference between the inferior and supe-
rior treatments would increase to two
standard errors. (The difference itself
has not changed, but the units it is mea-
sured in have gotten smaller.) Now the
probability that the experiment will
identify the superior treatment more
than doubles, to 65.8 percent.

Given the above considerations,
scientists clearly need other strategies
for battling with measurement er-
ror, besides the expensive brute-force
method of increasing the number of
replications. However, the concept
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randomized complete block

of replication does provide a useful
common currency for quantifying and
comparing the benefits of other error-
control strategies. The error reductions
or accuracy gains achieved by any
method can be expressed in terms of
the number of additional replications
that would be required to achieve the
same improvement.

Designing for Accuracy

The second strategy of blocking was
also developed from crop research at
Rothamsted Experimental Station, by
Fisher and his protégé Frank Yates in
the 1930s. It requires scientists to care-
fully think out the design of the experi-
ment before beginning,

A typical experiment has one or
more deliberately controlled factors of
interest, such as diets for chickens or
chemicals for reactions, which can be
given the generic label of “treatments.”
In agricultural yield trials, each combi-

Figure 4. Blocking builds accuracy into an
experiment. The simplest method, the com-
pletely randomized (CR) design, applies treat-
ments at random to experimental units. At top
left, 24 hypothetical plots of turfgrass are ran-
domly assigned six treatments, A through F,
for a total of four replications. Accuracy can be
increased by the randomized complete block
(RCB) design, subdividing the experimental
units into as many blocks as there are replica-
tions. Statistical efficiency increases because
the smaller blocks are more uniform than the
whole field. The RCB trial shown at top right,
with only three replications arranged from
left to right, typically provides about the same
level of accuracy as the four replications of the
CR trial shown at top left. Shown at left is a
trial for perennial ryegrass (background) and
Kentucky bluegrass (foreground) from the Na-
tional Turfgrass Evaluation Program, which
uses RCB designs with three blocks. (Photo-
graph courtesy of Scott Ebdon, University of
Massachusetts, Amherst.)

nation of genetic and environmental
variables is considered to be a treat-
ment. Thus, an experiment may test
30 genotypes (varieties differing in one
or more genes) in 20 different environ-
ments, for a total of 600 treatments.

The experimental design specifies
in advance how the treatments will be
allocated to experimental units (plants,
chickens, people). It usually incorpo-
rates both randomization and repli-
cation to minimize bias and increase
accuracy. Although intended to be the
same, units given the same treatment
always vary because of uncontrolled
factors. In the realm of the life sciences
the units are never completely identi-
cal, and the application of treatments
is never completely uniform. The pur-
pose of an experimental design is to
minimize the consequences of uncon-
trolled variation.

The simplest design, called the com-
pletely randomized (CR) design, simply



assigns treatments to experimental
units at random. The randomized com-
plete block (RCB) design subdivides
the experimental units into as many
blocks as there are replications. Within
each block, each treatment is allocat-
ed to one unit at random. The blocks
are chosen to minimize uncontrolled
within-block variations. For instance,
in an agricultural trial, plots that are
near to one another are likely to be
more similar than plots separated by
a greater distance. Thus the blocks
are simply compact parcels that are
smaller and more uniform than the
whole field.

Extensive experience with RCB
designs shows that one can typically
achieve a “statistical efficiency” of 1.3,
which means that the accuracy of the
experiment is comparable to a CR de-
sign with 1.3 times as many replica-
tions. Thus a RCB with three actual rep-
lications is about as accurate as a CR
with four, so the researcher has gained
a full replication “for free.”

And yet there are even better ap-
proaches than RCB. So-called “incom-
plete block designs” (in which each
block receives only a subset of the
treatments) also reduce the residual
error, but can accomplish two other
things that RCBs cannot. First, they
allow the investigator to adjust esti-
mates of treatment effects closer to
their true values. Second, these ad-
justments can improve rankings, in-
creasing the probability of the truly
best entry winning the trial. Although
blocking is pervasively popular in sci-
entific research, scientists are rarely
aware of these additional benefits of
incomplete blocking.

From Frogs to Shrinkage Estimators
Though the idea of parsimony is old,
its modern expression in statistics had
to wait for two breakthroughs around
1955: the theory of shrinkage esti-
mators, initiated by Charles Stein of
Stanford University, and the advent of
modern digital computers. Modeling
is not as easy to grasp as replication
and blocking, so I will begin with a
“toy example” before proceeding to
some real case studies.

Suppose that you are collecting
frogs from a pond for a jumping-frog
contest. You collect several frogs and
race them over a 10-yard course. They
complete the course in a range of times
from 30 to 90 seconds, with an average
of a minute. What is your best estimate
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of the time that each frog would take if
it hopped the course again?

Naively, you might expect a frog
that took 40 seconds the first time to
finish in 40 seconds the second time.
(For simplicity, let us ignore learn-
ing effects.) Indeed, that would be
your best guess if you had not col-
lected any other frogs. Also, the actual
measurement is the best estimator of
the true value if there are two frogs.
However, Stein and other statisticians
proved that it is not the best estimate
if you observed three or more frogs.
Instead, you should “shrink” each
frog’s deviation from the mean by a
certain amount, determined from the
number of frogs and the variability of
the times. Suppose the formula told
you to shrink your frog’s deviation by
30 percent. Then you would estimate
that it would finish 14 seconds faster
than the mean the second time—that
is, in 46 seconds instead of 40. Such a
procedure is called, naturally enough,
a “shrinkage estimator.”

Shrinkage estimators have been
proven both empirically and theoreti-
cally. Why do they work, and what
do they have to do with parsimony?
Without a shrinkage estimator, you
would in effect be assuming that ev-
ery frog is a unique animal, unrelated
to every other frog, so that the other
frogs’ times are irrelevant to determin-
ing vour frog’s ability. But it is much
more reasonable—and parsimoni-
ous—to assume that all of the frogs
come from one genetic talent pool.
Their abilities are distributed along
a bell-shaped curve, with most frogs
close to the mean ability and only a
small percentage being especially fast
or slow hoppers. Thus your frog’s true
ability probably lies closer to the mean
than its 40-second time in the first race
would suggest. Note that the shrink-
age estimator uses all of the data when
calculating each frog’s estimate. This
more vigorous use of the data increas-
es accuracy.

Incidentally, although merely shrink-
ing estimates toward the average value
does not change rankings, more com-
plicated experiments or models can
change rankings and hence can change
winners. Also, numerous statistical
analyses, including multiple-regres-
sion models, can produce adjusted es-
timates different from the actual data,
even though these may not be called
“shrinkage estimators.” Fitting models
to data often requires millions or even
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Figure 5. Modeling recovers variation from
signal and noise differently depending on
the complexity of the model. Signal is rela-
tively simple, so it is captured rapidly by
early model components. But noise is very
complex. Noise is captured slowly at first,
suppressed by considerable signal recovery,
then more quickly by exploiting chance cor-
relations in the noise, and slowly thereafter.
Predictive accuracy is improved by capturing
signal but degraded by capturing noise. The
implied response for signal minus noise is
a unimodal response called Ockham'’s hill,
shown in Figures 7 and 9.

billions of arithmetic steps, making
computers essential.

Moving from this toy example to
real experiments, scientists in many
fields routinely use statistical models
for various purposes other than gain-
ing accuracy, such as testing for sig-
nificant effects or summarizing and
visualizing complex information. For
example, a common data format is a
two-way layout or data matrix, such
as the yields of 30 genotypes in 20 en-
vironments or sales of 19 products in
57 stores. Principal-components anal-
ysis, factor analysis, correspondence
analysis (also called reciprocal aver-
aging), nonmetric multidimensional
scaling and other popular multivari-
ate analyses can reduce the high-di-
mensional data to a two-dimensional
graph that often successfully captures
most of the structure in the data.

Unfortunately, precious few scien-
tists—apart from scientists in a few
specialties such as signal process-
ing—know and exploit the fact that
these familiar analyses can also serve
the purpose of gaining accuracy. The
models become more complex and
less parsimonious as further compo-
nents are added. Because the signal is
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Figure 6. Statistical modeling can help in visualizing complex data as well as increasing ac-
curacy. The AMMI (Additive Main Effects and Multiplicative Interaction) model is useful
for two-way data tables whenever main (average) and interaction (differential) effects pres-
ent researchers with different problems and opportunities, as in agricultural yield-trial re-
search. AMMI first accounts for main effects and then applies principal-component analysis
to the interactions. On the horizontal axis, this AMMI1 biplot shows main effects for seven
soybean genotypes (circles) in 10 New York State environments (squares). The vertical line
marks the grand mean (2,678 kilograms per hectare). Those varieties and environments to
the left performed poorly overall, whereas those to the right performed well. On its vertical
axis, this biplot shows interaction scores. The interaction for a given genotype and environ-
ment is estimated by multiplying their scores; thus genotypes and environments with scores
of the same sign have positive interactions, but opposite signs indicate negative interac-
tions. The interaction scores reveal a trend from early-maturing varieties and their preferred
short-season environments toward the top to late-maturing varieties and their preferred
long-season environments toward the bottom. This biplot successfully captures 96,9 percent

of the total variation in this complex data set.

relatively simple and the noise is very
complex, the early model components
selectively recover signal whereas the
late model components selectively re-
cover noise. By using only the early
components—a form of shrinkage—
one can obtain a parsimonious model
that makes more accurate predictions

statistical efficiency

1 4 underfit
signal

0 1 2 3 4 5 6
AMMI model
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than the data. Let us see how this
plays out in three real examples.

Agricultural Trials

The turf industry in the United States is
huge; about $40 billion is spent annu-
ally for lawn care. There are about 50
million acres of maintained turf in the

Figure 7. The AMMI model family exhibits
Ockham’s hill, with a relatively parsimoni-
ous model most accurate and efficient. A
quality trial of perennial ryegrass, a com-
mon species for golf courses and home
lawns, provides an example. In this case,
AMMI2 with two principal components
is most predictively accurate (white line),
achieving an impressive statistical effi-
ciency of 5.6. This means that applying the
model to the data produced the same accu-
racy as gathering 5.6 times as much data and
not using the model. Models with fewer
components are less accurate because they
underfit real signal, whereas models with
more components are less accurate because
they overfit spurious noise.

United States, which would blanket
a square 280 miles on a side. The Na-
tional Turfgrass Evaluation Program
(NTEP) conducts trials with several
hundred entries at about 25 locations
for its ongoing research to improve
turfgrass quality.

Scott Ebdon, of the University of
Massachusetts, and I have analyzed
the NTEP data with a variant of prin-
cipal-components analysis called
AMMI. The salient point is that AMMI
produces a model family—AMMIO,
AMMI1, AMMI2, AMMI3 and so
on—with more and more parameters
until reaching the full model, which is
identical to the data matrix. The num-
ber of parameters in the most accurate
models is usually a small fraction of
the number of treatments. Choices
with fewer parameters underfit the
real signal, whereas models with
more parameters (including the full
model that equals the data!) overfit
spurious noise. This response, fit-
tingly called Ockham'’s hill, has been
explored in detail in my previous
American Scientist article (“Predic-
tion, Parsimony and Noise,” Sep-
tember—October 1993) and my recent
book on scientific method.

In an actual turfgrass quality trial,
where we used the various members of
the AMMI family to predict cross-vali-
dation data, AMMI2 was most accu-
rate, with a statistical efficiency of 5.6.
This means that it produced the same
accuracy gain as collecting 5.6 times as
much data. To collect that much extra
data would have cost NTEP over $1
million. Hence, modeling proved to
be an extremely cost-effective strata-
gem for accelerating improvements in
turfgrass quality. Inspiration does save
perspiration!

Parsimonious models typically
achieve statistical efficiencies of 2 to 4;
blocking designs achieve an efficiency
of 1.3 or so. But this comparison ac-
tually understates the superiority of
parsimonious modeling. We should re-
ally be comparing the gnin in accuracy
using a baseline that comes from the
experiment itself. The statistical benefit
from modeling (equivalent to adding
1 to 3 times the replications in the ex-
periment itself) greatly exceeds that
from blocking designs (0.3).

Despite consistent and impressive
results, the adoption of aggressive sta-
tistical analysis in crop science has
been slow. As Donald Nielsen not-
ed in his presidential address to the



American Society of Agronomy sev-
eral years ago, agricultural scientists
still rely mainly on statistical tech-
niques developed before 1940—that
is, in the era of Ronald Fisher. At pres-
ent, worldwide breeding efforts ac-
count for an average vield increase of
about 1 percent per year in the major
crops. I conservatively estimate that
aggressive statistical analysis of the
same data would make it possible to
increase this average to 1.4 percent
per year, at virtually no extra cost.
Over a decade, that incremental gain
would translate into enough food for
millions of persons.

QTL Searches

In genetics, the inheritance of a simple
trait may involve a single gene, as in
Gregor Mendel's classic experiments
with peas. But a quantitative trait (such
as yield) involves multiple genes, which
are called quantitative trait loci (QTLs).
Numerous genes with relatively small
effects are considerably more difficult
to locate on chromosomes than a single
decisive gene. Searching for these genes
is an extremely important problem,
with numerous applications to crop im-
provements and human diseases.

QTL searches proceed as follows.
All individuals in the experiment are
screened for numerous genetic mark-
ers that have already been located in a
chromosome map. Each individual is
also measured for the quantitative trait
of interest (color, disease resistance
or whatever), called its phenotype. If
groups of individuals with different
versions of a given marker gene also
have different phenotypes, it is reason-
able to infer that a QTL for the trait
exists near that marker.

Numerous statistical methods have
been proposed for QTL searches dur-
ing the past 15 years. Recently, Min
Zhang at Cornell University and her
collaborators have developed a new
method with several notable advan-
tages. The most intriguing feature,
from the point of view of this article,
is that its superior performance results
from parsimonious modeling,.

From experience, geneticists know
that only a small proportion of the
marker genes are actually near QTLs
affecting the trait being studied. Zhang
used a kind of statistical method (a
Bayesian method) that can readily
incorporate this crucial biological in-
formation. Her approach explicitly fa-
vors a parsimonious model with few
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QTLs. Extensive testing shows that
this analysis efficiently detects QTLs
while largely avoiding false detections.
By contrast, previous methods lack-
ing this emphasis on parsimony per-
formed worse, and were more vulner-
able to problems of missing data and
small samples.

All three strategies—replicating,
blocking and modeling—are relevant
for accurate QTL searches. Replicating
and blocking increase the accuracy of
the phenotypic data, which in turn im-
proves QTL searches. And modeling
also helps, on two counts. First, mod-
eling the phenotypic data increases ac-
curacy before the search, as explained
in the previous section on agricultural
trials. Second, modeling QTLs parsi-
moniously improves the robustness
and accuracy of the search itself, as
explored in this section.

Molecular Shapes

For much biological and medical re-
search, including drug design, sci-
entists need to determine the three-

dimensional shape of a protein or
other large molecule with great accu-
racy. The basic shape of a molecule is
constructed from information on elec-
tron densities. This initial picture is
then refined using two kinds of data:
noisy, empirical data on x-ray diffrac-
tion intensities for the large molecule
of interest, and a data base of typical
distances and angles between atoms
in small molecules. Note the analogy
with the toy example, which also bal-
anced two kinds of data: the data on a
given frog and the data on other frogs.

To increase accuracy, crystallog-
raphers must choose an appropriate
trade-off between these two kinds of
data. In a molecule with 1,000 atoms,
there are 3,000 parameters to be deter-
mined—namely, the three coordinates
in space of each atom. But the data-
base can reduce the number of inde-
pendent parameters by constraining or
shrinking all estimates of the chemical
bonds of a given kind toward the same
length. Crystallographers estimate that
for proteins the number of parameters

Figure 8. Quantitative trait loci (QTL), which control multiple-gene traits, are of great
importance in crop improvement and human disease. By mapping QTL for yield, Steven
Tanksley of Cornell University and his collaborators discovered beneficial genes in a small
wild tomato from Peru (top left). Transferring the genes into the commercial variety at upper
right produced fruit about 10 percent larger, shown at the bottom. Parsimonious modeling,
incorporating the background information that rather few marker genes are near QTLs for
a given trait, has been used to greatly improve the effectiveness of QTL searches. Such tech-
niques could be applied to searches for medically important QTLs in the human genome,
such as the genes underlying high blood pressure, improving the prospects of new treat-
ments. (Photograph courtesy of Steven Tanksley, Cornell University.)
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can usually be reduced by a factor of
approximately 7.5 (in this case, from
3,000 to 400). Reduction of parameters,
as in the agricultural example, is a hall-
mark of a parsimonious model.

The question then arises of what
relative weights one should place on

the x-ray data and the data base in
order to optimize accuracy. For de-
cades, a measure called the R factor
had been used, which was based on
the amount of agreement between
the original data and the restrained
model. Unfortunately, in flagrant dis-

regard of parsimony, the R factor can
be made arbitrarily good by adding
more parameters (overrestraining the
model). In 1992, Axel Briinger, then
at Yale University but now at Stan-
ford, introduced the “free R statistic,”
which avoids overfitting the noise by

optimal weights

<— model accuracy

weight on direct x-ray data —>
<«—— weight on indirect data bank

Figure 9. Accuracy is essential in determining the three-dimensional shapes of molecules for drug development. For example, protease inhibi-
tors are an important class of drugs for combating HIV infection, and the inhibitor molecule’s interaction with an HIV protease depends on
its shape. Biologists determine a protein’s shape by combining information from x-ray diffraction, which gives a noisy reading of the crystal
structure (fop left), with information from a data bank containing known bond lengths and angles. Shown are two cutaway views of a model
of the TL-3 inhibitor at the site where it interacts with the protease, a known structure shown extending into the background. In the “before”
image, an electron-density map (blue mesh) calculated from the diffraction pattern is overlaid on a structural model based on information
from the data bank. When proper weights are applied to these two kinds of data, an accurate structure can be fitted (“after”). A statistic called
the R factor measures the agreement between the raw diffraction data and calculated electron densities. A measure called Ry, which uses
cross-validation to assess predictive accuracy, is now widely used to improve the accuracy of modeled protein structures. Before the adoption
of the more parsimonious Ry.., modelers typically continued to add parametets to reduce R. As the R factor decreased beyond the optimal
weights now found by Ry, model accuracy actually declined because the models overfitted the noise (graph). (Model images courtesy of
Holly Heaslet and Justin Chartron, Scripps Research Institute; diffraction image courtesy of C. David Stout of Scripps.)
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using cross-validation. Most of the
x-ray data are used to construct the
model of the molecule, but about 10
percent of the data, selected at ran-
dom, are withheld in order to check
the predictive accuracy of the model.
Just as one would expect, as the em-
phasis given to the direct x-ray data
increases (and the emphasis on the
database decreases), the free R statis-
tic displays Ockham'’s hill. The peak
on Ockham’s hill (here inverted) indi-
cates the optimal choice of weights for
the two kinds of data.

At the time I wrote my previous
article for this magazine, Briinger’s
method had been introduced just the
preceding year. That year, only 1 per-
cent of the crystal structures depos-
ited in the international Protein Data
Bank had used the free R statistic.
Just three years later, adoption of Rree
had reached 33 percent, and after five
years, 71 percent. By 2000, adoption
had reached 92 percent, and at pres-
ent Ry is nearly always reported.
Thus crystallography constitutes an
encouraging case study in how rapidly
parsimonious modeling can become
accepted (or even required) when data
are expensive and limited, but compu-
tation and modeling are cheap.

Science Education

Two facts are evident. On the one hand,
all statisticians know that parsimoni-
ous modeling can increase accuracy
and efficiency. On the other hand, few
scientists know about this great oppor-
tunity. What explains this mismatch,
and what is the remedy?

In part, | would suggest that model-
ing is neglected because of scientists’
complacency. Many scientists think
that once they have done replication
and blocking, they are finished with
their statistical homework, thank you
very much. The goal of this article is
to disturb this unfounded complacen-
cy. Replication accomplishes less than
many scientists expect it to, blocking
is often done by suboptimal designs,
and modeling to gain accuracy is rou-
tinely neglected.

Why do scientists sometimes fail at
the accuracy game? I would pin the
blame on a common deficiency in their
training. Scientific research requires
mastery of both the general principles
of science and the specialized tech-
niques of a particular discipline, but
the emphasis can fall too heavily on the
latter. The community of investigators

www.americanscientist.org

in a given specialty can remain quite
unaware of fine examples of the uses
of statistical methods that can be found
in other disciplines or literatures, and
thus miss opportunities to gain accu-
racy through modeling in their own
work. Astronomers or geologists who
see an example of successful modeling
in agriculture or chemistry ought to be
able to distinguish transferable general
principles that they can import into
their own specialties. Parsimony and
its relation to accuracy (as described
by Ockham’s hill) is one such prin-
ciple, with pervasive relevance in sci-
ence and technology.

Innovation comes not only from in-
ventors of new ideas, but also from
importers of relevant ideas. This fact
has been recognized by recent position
papers on U.S. science education that
emphasize versatility in the scientific
workforce and the transfer of knowl-
edge between disciplines.

Manifestly, it is precisely the gen-
eral principles of scientific method
that are the most cosmopolitan facet
of science. These constitute the most
frequent and promising candidates
for enhancing knowledge transfer and
greater adaptability.

When a scientist plans an experi-
ment with a statistical consultant, or
when a student plans research with
a thesis advisor, the conversation is
likely to include recommendations for
replicating and blocking to gain ac-
curacy. After settling that, the scientist
or student should draw but one breath
before using it to ask, “And what about
also gaining accuracy from parsimoni-
ous modeling of the treatments?” Sci-
entific research is expensive, so it is
imperative to use resources efficiently.
Anything less is irresponsible.

Surely at least 25 percent of scientific
projects have one or more key steps
where parsimonious modeling is ap-
plicable, but not yet implemented. It
may well be that the agricultural ex-
ample, in which the current rate of
progress could be improved by 40
percent simply from better use of data
already in hand, is a typical case. If
so, simple multiplication suggests that
we are missing out on 10 percent of
the potential return from our invest-
ment in scientific experiments. A mod-
est investment in training, with atten-
tion paid to such general principles of
scientific method as parsimony, could
reap tremendous benefits for scientific
knowledge and for the development

of new commercial and medical prod-
ucts. Extra accuracy at trivial cost is a
great bargain.
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