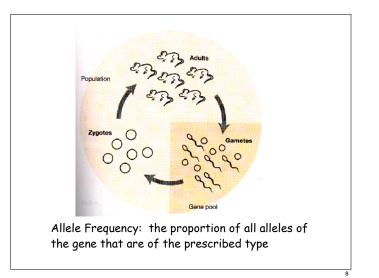
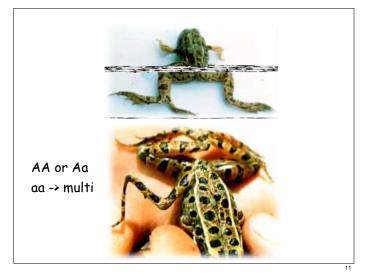


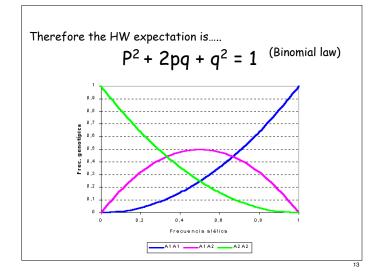

Door Prizes!

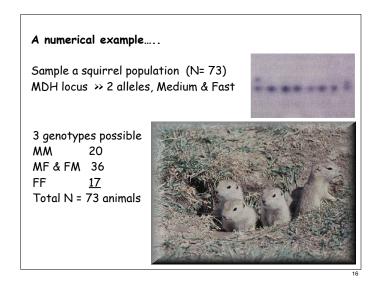

"The science of population genetics is the automechanics of evolutionary biology."

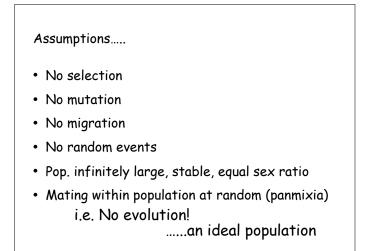

Richard Lewontin, 2000

A model for gene frequencies in the absence of evolution.....

Does the gene pool predict the distribution of genotypes within a population?







Information ne composition of			the genetic
• fre	lleles at [.] q of allele q of geno	25	
	A1A1	A1A2	A2A2
Population 1	50	0	50

Assume a gene with 2 allelesA & a				
Allele Frequency: Freq of A = p (range fi Freq of a = q	rom 0-1)	Sperm		
Genotype frequency:	Allele Frequency	A p	a q	
For random mating with 2 alleles at frequencies Egg p & q	A P	AA p ²	Aa pq	
	a q	aA pq	aa q²	

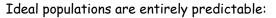
3 genotypes possib	le
MM	20
MF & FM	36
FF	<u>17</u>
Total	N = 73 animals

Calculate allele frequencies......

M = 76 <u>F = 70</u> $P_m = 76/146 = 0.5205$ $P_f = 70/146 = 1-P_m = 0.4795$

Total alleles 2N = 146

Significance of HW....


$$p^2 + 2pq + q^2 = 1$$

- Allele frequencies predict genotype frequencies
- At equilibrium, allele & genotype frequencies do not change from generation to generation
- If population displaced from equilibrium, return to equilibrium occurs in one generation

Do these	data	conform	to	НW	expectations?

Expected proportions	MM 0.5205 ² = .2709	MF 2(0.5205x0.4795) .4992	FF 0.4795 ² .2299 = 1	
Expected number	.2709x73 =19.776	.4992×73 =36.4426	.2299×73 =16.783	
Observed number	20	36	17	

Do these data conform to HW expectations? (Chi-squareTest) H_o: No deviation from expected proportions $X^{2} = \sum \frac{(Obs - Exp)^{2}}{Exp}$ $= \frac{(20 - 19.776)^{2}}{19.776} + \frac{(36 - 36.442)^{2}}{36.442} + \frac{(17 - 16.773)^{2}}{16.773}$ = 0.00251 + 0.005427 + 0.00277 $X^{2} = 0.011$

No...

- selection
- mutation
- migration
- random events
- infinitely large, stable, equal sex ratio
- random mating (panmixia)

To check significance...... df = # of classes -1- # parameters calculated from data = 3-1-1=1

Critical X² at α 0.05 = 3.1415 Since X² < X²_{.05} = 3.1415 we <u>fail to reject</u> the H_o i.e. the data conform to HW

If $X^2 > X^2_{05}$

then we <u>reject</u> H_o , conclusion is that the population is not in HW and (at least) one of the assumptions of HW is invalid

 $freq.(A1A1 in zygotes) = p^2 \quad (1) \\ freq.(A1A2 in zygotes) = 2pq \quad (2) \\ freq.(A2A2 in zygotes) = q^2 \quad (3)$

- If all assumptions are true, then equations 1-3 must be true.
- If genotypes are in HW proportions, one (or more) of assumptions <u>may still</u> be violated.
- If genotypes are <u>not</u> in Hardy-Weinberg proportions, one or more of assumptions <u>must</u> be false.

2 additional wrinkles in practice.... For loci with <u>more than 2 alleles</u>: Expand the binomial e.g. for 3 alleles

p + q + r = 1

$$p^2 + q^2 + r^2 + 2pq + 2pr + 2qr = 1$$

For many loci:

If assume all loci are independent of one another then you can repeat this procedure for each one, add all the df & X^2 values, and check significance over all loci

If population is not in HW => some assumption has been violated......

• Random chance/error

e.g. inappropriate selection of field site, sample not large enough

- Wahlund effect
 - Sample equally across populations in HW
 - e.g. in aquatic thermocline, or behavioral subdivision
 - decrease hets & increase homozygotes
- Selection
- Inbreeding Breed with others genotypically more like themselves e.g. positive assortative mating, small population sizes
 - decreases hets & increases homozygotes
 - greater likelihood of shared deleterious alleles

Problems

- In humans, the COL1A1 locus codes for certain collagen protein found in bone. The normal allele at this locus is denoted with S. A recessive allele s is associated with reduced bone mineral density and increased fractures in both Ss and ss women. A recent study of 1,778 women showed that 1,194 were SS, 526 were Ss, and 58 were ss (Uitterlinden et al 1998).
- (a) Are these two alleles in Hardy-Weinberg equilibrium in this population?(b) How do you know?
- (c) What information would you need to determine whether the alleles will be in Hardy-Weinberg equilibrium in the next generation?

25

- 2. In the peppered moth (Biston betularia), black individuals may be either homozygous (A1A1) or heterozygous (A1A2), whereas pale gray moths are homozygous (A2A2). Suppose that in a sample of 250 moths from one locality, 108 are black and 142 are gray.
- (a) Which allele is dominant?
- (b) Assuming that the locus is in Hardy-Weinberg equilibrium, what are the allele frequencies?
- (c) Under this assumption, what proportion of the sample is heterozygous?
- (d) What is the number of heterozygotes?
- (e) Under the same assumption what proportion of black moths is heterozygous?
- (f) Why is it necessary to assume Hardy-Weinberg genotype frequencies in order to answer parts b-d?