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Abstract  The active transmission of information from sender to receiver is a fundamental component of communication, and is 
therefore a primary facet in evolutionary models of sexual selection. Research in several systems has underlined the importance 
of multiple sensory modalities in courtship signals. However, we still tend to think of individuals as having a relatively static sig-
nal in consecutive communicative events. While this may be true for certain traits such as body size or coloration, behaviorally 
modulated signals can quickly violate this assumption. In this work, we explore how intraspecific variation may be an important 
component of interspecific signal divergence using cichlid fishes from Lake Malawi. Behavioral analyses were made using six 
species of Malawian cichlids from two divergent genera. While interspecific differences were found between congeners based on 
species-level analyses of both acoustic and audiovisual signals, intraspecific variation was of a similar magnitude. Specifically, 
individual fishes were found to possess highly plastic signal repertoires. This finding was ubiquitous across all species and re-
sulted in a great deal of overlap between heterospecific individuals, despite statistically distinct species means. These results 
demonstrate that some aspects of courtship in Malawian cichlids are more plastic than previously proposed, and that studies must 
account for signal variability within individuals. We propose here that behavioral variability in signaling is important in deter-
mining the communication landscape on which signals are perceived. We review potential complexity deriving from multimodal 
signaling, discuss the sources for such lability, and suggest ways in which this issue may be approached experimentally [Current 
Zoology 57 (2): 237–252, 2011]. 
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1  Introduction 
By definition, some version of communication is a 

prerequisite for all proposed models of speciation via 
sexual selection. Given that sexual selection as a whole 
is a prominent mechanism for speciation (Kokko et al., 
2006; Lande, 1981), the role of communication in 
broader evolutionary processes is readily apparent. The 
specific nature of the mechanisms for signal production, 
transmission, and perception, are key to understanding 
the effects of communication on speciation.  

Classic models of sexual selection include a direct 
genetic link between male signal and female preference 
(Fisher, 1915; Weatherhead and Robertson, 1979; Za-
havi, 1975). More recent models, however, allow for the 
possibility of less direct effects in communication sys-
tems. The spectrum of sensory drive and bias hypothe-
ses involve alternate explanations in which male signals 
may evolve to exploit environmental transmission char-

acteristics (Couldridge and van Staaden, 2004; See-
hausen et al., 2008) or even the endogenous traits of the 
female sensory systems (Endler, 1993). 

Most present sexual selection models focus primarily 
on the perception of and reaction to a signal. If we as-
sume that signaling is indeed for the ultimate purpose of 
communication, this still begs the question: exactly 
what is the information content of a sexual signal? Do 
male courtship displays say “I am a male of species A 
behaving in context X”? Are courtship signals condition 
dependent, as would be predicted if speciation is ac-
tively occurring via sexual selection (Boughman, 2007)? 
The underlying assumption that signals convey accurate, 
context-specific information is pervasive in most sexual 
selection literature (Hamilton and Zuk, 1982; Maan et 
al., 2006). However, several alternate options derived 
from general communication theory and affective neu-
roscience are not only possible, but also quite plausible 
in several systems. 
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2  Mate Selection and Complex Sig-
naling 

Appreciation for signal complexity and the wide-
spread multimodality of male sexual displays is in-
creasing (reviewed in Candolin, 2003; Hebets and Papaj, 
2005). At the same time, there is a distinct paucity of 
studies in which the use of multiple cues in mate choice 
are simultaneously investigated (Coleman, 2009). Spi-
ders and insects are notable exceptions (Elias et al., 
2006; Papke et al., 2007; Uetz and Robert, 2002). In fish, 
analyses of complex signaling are largely limited to 
functions other than mating (New and Kang, 2000; 
Rojas and Moller, 2002), and in the context of mate 
choice, most claims are based on the association of sig-
nals in different modalities (Smith and van Staaden, 
2009) rather than direct experimental verification (but 
see McLennan, 2003). 

Determining the relative use of each signal is diffi-
cult because it requires a comprehensive understanding 
of the mating system and how this system works under 
natural conditions. Moreover, selective pressures may 
be both direct and indirect. Mating preferences may 
change as an immediate consequence of the signals 
themselves if divergent sensory adaptation affects the 
perception of signals (Maan and Seehausen, 2010). 
Additionally, such preferences can also diverge as a 
result of indirect effects, for instance selection within 
the sensory environment (Couldridge and van Staaden, 
2004).  

Biologists have elaborately investigated visual and 
acoustic modalities, but in pursuing the rich research 
possibilities they provide, it is possible that our view of 
communication and sexual selection has been too nar-
rowly circumscribed. The application of rigid experi-
mental or conceptual frameworks when interpreting 
signaling systems and their consequences may obscure 
relevant insight. Barlow (1998) cautioned against the 
use of the choice experiment as a possibly constraining 
tool, and the information approach (Shannon and 
Weaver, 1949) may be similarly restrictive when ac-
corded a central causal role. A return to an assess-
ment/management approach, in which signals are used 
to manage the behavior of others by operating on the 
couplings generated by others’ assessment activities 
might be timely (Owings and Morton, 1997). 

The potential roles and interactions of classical sex-
ual selection models of signaling in speciation are 
manifold. Signaling may be complex in terms of the 
component modalities involved, but also because of 

lability or individual variation. Here we consider the 
possible roles of signal variability, plasticity, and moti-
vation in sexual selection. By placing these in the con-
text of sexual signaling in the cichlid fishes of East Af-
rica, we hope to shed light on the role that complex 
communication plays in the generation of rapid evolu-
tionary radiations. 

3  Cichlids as A Model for Complex 
Signaling 

The lacustrine species flocks of cichlid fishes in Af-
rica are the largest and most species-rich vertebrate ra-
diation known, collectively comprising thousands of 
endemic species which have diverged from a common 
ancestor in a geologically brief time (Azuma et al., 
2008). They display an astonishingly high degree of 
ecological and behavioral differentiation between spe-
cies, although genome diversity between species is 
comparable to that of any two humans (Loh et al., 2008). 
Behavior has been frequently suggested as the ratchet 
driving this divergence, and sexual selection plays a 
central role in alternative models of cichlid speciation 
(Crapon de Caprona, 1986; Streelman and Danley, 
2003).  

Across the African continent, we have multiple dy-
namic natural evolutionary experiments with biologi-
cally attractive features; large numbers of species at 
various stages of differentiation, a broad range of di-
vergence times, animals at high density with social sys-
tems ranging from relatively solitary individuals to 
communities with rigidly structured hierarchies, and 
utilizing many modes of communication. Laboratory 
investigations are generally structured around an as-
sumption that due to the sheer number of incipient spe-
cies, a single environmental or behavioral variable can 
be explored while keeping all others constant. But can it? 
In the subsequent sections we review (though not ex-
haustively) what is known of cichlid signaling in mate 
choice, suggest possible sources of variation, and argue 
that cognizance of internal factors is a necessary pre-
requisite if we are to achieve a deeper understanding of 
the role of behavior in cichlid signaling and divergence. 

Study of cichlid communication has a venerable his-
tory dating back at least to the 1930s (Liebman, 1933; 
Myrberg et al., 1965; Seitz, 1940, 1949). The reality of 
multimodal signaling in the case of the African cichlids 
was well-recognized and clearly expressed in the 1970’s 
(Silverman, 1978; Tavolga, 1976), and plastic multimo-
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dal behaviors even described by Myrberg (1980)1 as a 
Gordian Knot of indecipherable complexity. Similarly, 
in early work on cichlid courtship and signaling behav-
ior individuality/variability was a major locus of interest 
(e.g., Barash, 1975; Heiligenberg, 1973, 1976; Lanzing, 
1974). More recently, however, the tendency has been to 
downplay this variation, viewing it as ‘noise’ rather than 
‘signal’. The uncertainties of capturing a coherent pic-
ture from a fluid process (i.e., rapid diversification and 
consequent taxonomic instability) inevitably tempt in this 
direction. This is compounded by logistical constraints 
with respect to sampling, statistical concerns about pseu-
doreplication and data independence, and methodo-    
logies which do not effectively capture variation. 

Given the plasticity of other aspects of cichlid bio-  
logy, it would indeed be surprising if their signaling 
were not similarly malleable. Intraspecific plasticity 
through development is known for genetic or mor-
phometric traits that can influence signal production 
(relative jaw morphology; Stauffer and Van Snik Gray, 
2004) or perception (opsin pigment expression; Hof-
mann et al., 2010). Therefore, it would seem that ac-
knowledging the extent of intraspecific or -individual 
variability in communication regimes will enable us to 
better deal with apparently inconsistent results and di-
rect attention to alternative explanations (e.g., multiple 
cues along a time continuum; Jordan, 2008). 

To the extent that the general cichlid pattern of cou-
pling high species diversity with fairly small disparities 
in ecomorphological traits is mirrored in communication, 
seemingly small differences in signals could assume 
disproportionate importance. The best chance of identi-
fying these will be to describe the variation in its en-
tirety, remove genuine commonalities, and leave the 
telling differences whether they are qualitative or quan-
titative. The current resurgence of interest in the func-
tional aspects of cichlid signaling presents an opportu-
nity to do just that. We will describe and summarize this 
diffuse primary literature to focus attention on likely 
interactions, to highlight the variability underlying cich-
lid acoustic signaling, and to suggest an alternative ap-
proach which might aid in negotiating the current im-
passe that is uni- and multimodal signal plasticity. 

4  Review of African Cichlid Commu-
nication  

Visual communication is well-studied in the African 

cichlids - to the extent that it is frequently (though per-
haps erroneously) viewed as a 'magic trait' (Gavrilets, 
2004) in speciation - but the role of other communica-
tion modalities in mate choice have received rather less 
attention. For convenience and clarity, we organize our 
presentation by this central modality, drawing attention 
to cross-modal interactions only where there is direct 
evidence to support this. (Note that genus names for the 
rock-dwelling mbuna of Lake Malawi follow those cur-
rently recognized by the International Commission on 
Zoological Nomenclature, although there is some debate 
cf. Oliver and Arnegard, 2010). We also exclude 
non-mating communication and extended phenotypes 
for the most part.  
4.1  Visual channels 

The significance of vision in cichlid mate choice 
tends to center on the role of color-, and to a lesser ex-
tent, pattern differences. Visual sexual selection appears 
to be commonplace in the rift lake cichlids, and has 
been hypothesized for fishes from all of the great lakes 
(Malawi - Arnegard et al., 1999; Victoria - Seehausen et 
al., 1997; Tanganyika - Salzburger et al., 2006). Direct 
behavioral assays have demonstrated that females pref-
erentially associate with conspecific males when given a 
choice between congeners as a result of differences in 
male coloration (Couldridge and Alexander, 2002a; 
Jordan et al., 2003; Kidd et al., 2006). Moreover, the 
degree of reproductive isolation resulting from such 
positive color-assortative mating is weaker amongst less 
distinct morphs (Salzburger et al., 2006). In multimodal 
tests, however, visual cues alone result in lowered male 
courtship and display rates compared to those with 
unlimited access (Silverman, 1978), and are insufficient 
to maintain species boundaries in certain cases (Blais et 
al., 2009; Plenderleith et al., 2005).  

While chromatic signals appear to dominate cichlid 
mate choice, aesthetic patterning has inspired many 
colorful descriptions but few studies have examined 
stripe/ barring patterns directly. Seehausen et al. (1999) 
surveyed patterning in a phylogenetic framework and 
concluded that stripe patterns are constrained ecologi-
cally with no influence of sexual selection. However, 
significant genetic differentiation consistent with a role 
for male nuptial patterning in species recognition and 
assortative mating was identified in four sympatric pu-
tative species (genus Diplotaxodon) whose males differ 
primarily in ‘monochromatic’ patterning of body and 

                     
1 Myrberg AA, 1980. Sensory mediation of social recognition processes in fishes. In: Bardach JE, Magnuson JJ, May RC, Reinhart JM ed. Fish behavior and 

its use in the capture and culture of fishes. ICLARM Conference Proceedings 5: 146–178. 
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fins (Genner et al., 2007). Similarly, the size and shape 
of the egg spots present on an individual’s anal fin may 
serve as a variable recognition cue within and between 
species (Konings, 1990). An intraspecific sexual adver-
tisement function in female mate choice is well estab-
lished for some species. For instance, females in some 
species exhibit preferences for males with larger num-
bers of egg spots in both Lake Malawi and the satellite 
Lake George (Hert, 1989, 1991). In contrast, Couldridge 
and Alexander (2002a, b) demonstrated conclusively 
that the sensory basis for mate preference in Metria-
clima lombardoi is positively associated with egg spot 
size and negatively associated with number. This may 
indicate a preference for dominant /territorial males who 
possess bigger and brighter egg spots than their subor-
dinates (Naish and Ribbink, 1990). Thus in cichlids, 
increases in egg spot size and number are not alternative 
means of eliciting the same female preference, and al-
though such preferences have been suggested to result 
from a sensory exploitation/bias (Tobler, 2006), there is 
currently no direct evidence to support this notion. Fur-
thermore, it is important to note that egg spots are not a 
diagnostic male trait in all species and are present in 
females, suggesting that the meaning of this sexual sig-
nal is likely not consistent between species. 

Direct behavioral tests of the salience of size or shape 
cues in cichlid mate choice are rare, and only indirect 
indicators allude to the possible consequence of the lat-
ter. Jordan et al. (2003) demonstrated that pattern and 
shape cues were sufficient to stimulate courtship and 
guide female choice of conspecific males, even where 
color was not a cue. In a system where lekking males of 
Astatotilapia flaviijosephi face constraints in fertilizing 
multiple females and are therefore choosy (Werner and 
Lotem, 2003), a sequential mate preference paradigm 
indicates sensitivity to size information, with selective 
allocation of courtship effort to more attractive (i.e., 
heavier) females (Werner and Lotem, 2006). A land-
mark-based morphometric study of three sympatric 
Petrotilapia congeners found subtle morphological dif-
ferentiation among species, and pronounced variation in 
the head region (Kassam et al., 2004). Similarly, 
‘barred’ and ‘blotched’ females of Metriaclima zebra 
and M. zebra ‘gold’ are very similar in color and pattern 
and can often be distinguished only by small differences 
in head and body shape (e.g., Knight and Turner, 1999). 

Unlike most other vertebrates, in which spectral dep-
rivation has little or no effect on visual development or 
behavioral responses, cichlids seem to be particularly 
sensitive to light quality (Kröger et al., 2001). UV sensi-

tivity has been demonstrated for Cynotilapia afra, 
Metriaclima benetos, and Metriaclima melabranchion 
(Jordan et al., 2004). Moreover, UV-sensitive opsins are 
expressed in the vast majority of Malawi mbuna, having 
been reported for fishes from multiple genera, and the 
UV-sensitive pigment is expressed in all of the recently 
diverged Metriaclima species studied thus far along with 
many others (Carleton, 2009). Spectral sensitivities in 
cichlids do not clearly correlate with habitat or feeding 
mode (Jordan et al., 2006), although it has been sug-
gested that planktivory is linked to UV sensitivity 
(Hofmann et al., 2009). Therefore, a potential role in 
mate choice is possible, particularly for rock-dwelling 
taxa inhabiting the shallower lake areas where substan-
tial UV light penetrates (Loew and McFarland, 1990). It 
is reasonable to expect that cryptic structural patterning 
of UV-reflective pigments may be present within and 
between species. Similarly, polarized light is rich in 
shallow environments, and Tropheops macrophthalmus 
can discriminate between horizontal and vertical polar-
ized light (Davitz and McKaye, 1978). This provides yet 
another visual channel to supplement the intensity and 
color of light, increasing the visibility of mates and en-
hancing contrast, object recognition, signal detection 
and discrimination. In sum, the contributions of the vis-
ual modality to cichlid signaling are complex. Over-
shadowing the lesser-explored channels are visual sig-
nals such as male nuptial coloration which, being rather 
stereotyped within species, are of practical application 
to field biologists (Markert and Arnegard, 2007), and 
play a rigorously demonstrated role in mate recognition 
(Seehausen et al., 1997; Seehausen and Van Alphen, 
1998). These well established aspects of cichlid com-
munication arguably constitute the single most impor-
tant axis of rock-dwelling cichlid divergence and evolu-
tion, though several others may also be influential.  
4.2  Mechanosensory signals 

A variety of African cichlids are known to produce 
acoustic signals in the context of courtship, including 
both riverine (Myrberg et al., 1965), and rift lake spe-
cies (Amorim et al., 2004; Lobel, 1998, 2001). Sound 
production is influenced by behavioral and social labi-    
lity (Amorim and Almada, 2005). Although there is little 
experimental evidence for the influence of sound on 
mating decisions of females (but see Verzijden et al., 
2010), a range of behavioral (Fay and Popper, 1975), 
psychophysical (Tavolga, 1974; Yan and Popper, 1992) 
and noninvasive physiological experiments (Ladich and 
Wysocki, 2003; Ripley et al., 2002; Smith et al., 2004) 
support a general correlation between hearing sensitivity 
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and acoustic signals in cichlids. 
Signal design is characteristically broadband, cove-    

ring frequencies from 20–1200 Hz, with peak energy 
between 180–500 Hz, and audible, upon playback to 
humans in the lab, as either a series of individual clicks, 
or more commonly, as a uniform grunt (Smith and van 
Staaden, 2009). Species-specific differences have been 
documented in lacustrine taxa (Amorim et al., 2008; 
Verzijden et al., 2010), but the relevance of these statis-
tically significant variations has yet to be demonstrated 
in a heterospecific context. Moreover, context-dependent 
differences are absent between male sounds produced 
during aggressive displays toward males and sexual 
displays toward females (Verzijden et al., 2010; but see 
Simões et al., 2008 for a contrasting view). In the few 
instances where multiple populations of the same spe-
cies have been investigated (Amorim et al., 2008; Smith 
and van Staaden, 2009), differences in signal parameters 
hint at the possibility of geographically differentiated 
dialects which could contribute to reproductive isolation 
of populations.  

Lateral display and quivering are common features of 
sexual signaling in cichlids (Baerends and Baerends van 
Roon, 1950; McElroy and Kornfield, 1990). A signaling 
fish (sender) aligns itself within a few centimeters of a 
receiver with fins erect, and vibrates its body, so as to 
generate a low frequency mechanosensory stimulus. In 
theory, the receiver could detect and integrate this in-
formation with its lateral line system, but there have 
been relatively few direct tests of this hypothesis 
(Mongomery et al., 2009). Components of this male 
lateral display (e.g., amplitude, frequency) may contrib-
ute to directional components of mate attraction (Braun 
et al., 2002), and may be indicators of condition signifi-
cant to mate choice.  
4.3  Chemical cues 

Olfactory cues are known to play an important role 
in social cognition in many fish species (Brown et al., 
2006; Ladich et al., 2006) and have been suggested to 
play an important role in mate choice in cichlids (Cole 
and Stacey, 2006; Plenderleith et al., 2005; Robison et 
al., 1998), though direct tests are sparse. Chemical 
cues appear to influence female mate choice (Plender-
leith et al., 2005) and assortative mating (Blais et al., 
2009) in Metriaclima emmiltos, but this is not true for 
all species, even close congeners. Initiation of court-
ship behavior by Metriaclima lombardoi males relies 
solely on female visual cues, and olfactory signals play 
little (if any), role in mate choice (Venesky et al., 
2005). Similarly, olfactory cues neither stimulated 

courtship nor guided female choice of males in four 
sympatric Metriclima species (Jordan et al., 2003). 
Short-range chemical cues are significant for female 
mate recognition of established relationships when 
nest-guarding at night (Archocentrus nigrofasciatum; 
Reebs, 1994). Overall, chemical cues seem to be more 
important as general indicators of social or reproduc-
tive status (Almeida et al., 2005; Bender et al., 2008) 
and recognition (Giaquinto and Volpato, 1997) rather 
than for mate choice. However, individual recognition 
of its own olfactory cues might play a role in 
self-referent mate choice (Thünken et al., 2009), par-
ticularly given that MHC is extremely variable in Lake 
Malawi cichlids (Klein et al., 1993). 

5  Case Study: Individual Malawi  
Cichlids Behaviorally Modify Signal 

While most previous work has sought to identify in-
terspecies differences in signal characteristics for both 
visual and acoustic signals in cichlids, some studies 
have also explored intraspecific acoustic variation re-
lated to individual size (Amorim et al., 2008; Verzijden 
et al., 2010). Many have alluded to the relationship be-
tween visual and acoustic signals during courtship dis-
plays (Ripley and Lobel, 2004). In quantifying this 
audiovisual association in a phylogenetic context, we 
found extensive inter- and intraspecific variation in in-
dividual usage of vocal or nonvocal courtship displays 
(Smith and van Staaden, 2009). This was built upon a 
level of individual signal variability with implications 
for con- and heterospecific interactions, which we detail 
below. 
5.1  Using courting pairs to investigate individual 
variation 

We staged encounters between pairs of naive, mature 
conspecifics (dominant males and gravid females) in a 
full access restrained choice arena for 6 species from two 
genera (Fig. 1): Metriaclima zebra, Metriaclima callainos, 
Metriaclima lombardoi, Melanochromis auratus, Melanoch 
romis johannii, and Melanochromis cyaneorhabdos. The 
Metriaclima and Melanochromis genera are both likely 
undergoing speciation by sexual selection, but are phy-
logenetically distant in terms of the rock-dwelling Mala-
wian cichlids (Albertson et al., 1999). Also the presence 
of a striped phenotype in Melanochromis species and a 
primary barred phenotype in Metriaclima suggests that 
these genera are sexually isolated on visual cues alone. 
Therefore, these genera were selected as two relatively 
independent species radiations. 
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Fig. 1  Simplified phylogenetic relationships of the study species, with sonogram for a representative courtship call of each 
taxon 
 

Behavior and acoustic signals were recorded over 
multiple courtship bouts in which we reused fish but 
always in unique pairings (methods detailed in Smith 
and van Staaden, 2009). The characteristics of courtship 
calls were broken down into three primary variables: (i) 
the primary frequency (the frequency which contained 
the most energy throughout the duration of a call), (ii) 
the total duration of the call, and (iii) the number of dis-
crete pulses contained within each call. Multimodal cues 
were scored as the association between visual courtship 
displays and calls. In particular, the number of calls 
produced during a single visual display was measured. 
Although males rarely emitted calls outside of a visual 
display, all calls that coincided with visual displays oc-
curred during the quiver phase of the male dance. 
Therefore, the association of the quiver displays and 

courtship calls was the focal multimodal behavior. 
Sound data was analyzed using multivariate dis-

criminant function analyses (DFAs) of call characteris-
tics identified by preliminary analyses to provide dis-
criminatory power e.g. number of individual pulses/call 
was highly correlated with total call duration in the mul-
tivariate model (r = 0.72, data not shown) and were ex-
cluded from subsequent analyses. Preliminary analyses 
demonstrated pulse period was only informative in the 
context of comparisons between the clicking species (M. 
callainos) and the grunting species (all others). Also, 
since pulse period was difficult to measure in many 
grunting calls due to the noise threshold, this trait was 
excluded from analyses. An identity MANOVA with 
individuals nested within species was used to determine 
the role of individual variation in the relationship be-
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tween species distributions. 
5.2  Individual variation in unimodal acoustic 
characteristics 

We found pronounced variation both between and 
within individuals for the characteristics of acoustic 
courtship signals. While multivariate analyses were able 
to distinguish species means based on acoustic charac-
teristics of four highly vocal species (Metriaclima cal-
lainos, Metriaclima lombardoi, Melanochromis cyaneor- 
habdos, and Melanochromis johannii), intra-individual 
variation was of a similar magnitude to intraspecific 
variation within all species tested. A DFA of the call 
characteristics for these species indicated that Metria-
clima callainos was distinct from its congener and both 
the Melanochromis, and that this divergence greatly 
exceeded the variation within M. callainos (Wilks’ 
Lambda = 0.329, P < 0.0001). More specifically, M. 
callainos calls were composed of broadband pulses 
where the interpulse duration was long enough for the 
call to appear as a series of independent clicks to the 
human ear, whereas for all other species the interpulse 
duration was short enough that calls formed a uniform 
grunting noise. 

A further DFA of the remaining three species re-
vealed that calls of Metriaclima lombardoi and 
Melanochromis cyaneorhabdos are indistinguishable, 
but both are diverged from the distinct grouping formed 
by Melanochromis johannii vocalizations (Wilks’ 
Lambda = 0.877, P < 0.0001). This result suggested that 
the courtship calls of congeners do not overlap, whereas 
overlap exists between heterogeneric species. A nested 
MANOVA, however, demonstrated that the calls of cer-
tain individuals from different species overlapped while 
falling outside their calculated species distribution 
(Wilks’ Lambda = 0.624, P < 0.0001), i.e., call variation 
within individuals and species can blur the lines of what 
may otherwise seem to be species-specific signals. This 
was particularly pronounced in M. lombardoi, where 
extensive variation resulted in individuals that over-
lapped with both M. cyaneorhabdos and M. johannii. 
Fig. 2 highlights variability in the calls of individuals of 
two species, showing that individual lability encom-
passes almost the entirety of variation observed for 
conspecifics (from the same population). More impor-
tantly, it may also exceed the total variation observed 
for heterospecifics of four other taxa (data shown for 
one). This extensive individual variation suggests a lim-
ited utility for general analyses of individual means as 
accurate descriptors of individual- or species-specific 
communication norms in these species. 

 

Fig. 2  Individual plasticity in acoustic signal characteris-
tics of Malawi cichlids 
A. Calls of a single Metriaclima callainos male span almost the en-
tirety of variation for this species and encompasses a range of fre-
quencies and total durations that exceeded the total variation observed 
for five Melanochromis cyaneorhabdos individuals. B. The calls of a 
focal M. cyaneorhabdos individual (yellow circles) covers virtually 
the entire range of the “species-specific” acoustic space (blue squares). 

 
5.3  Individual variation in use of multimodal 
associations 

Multimodal signal variation follows a pattern similar 
to that presented above for unimodal (acoustic) charac-
teristics, i.e. with a large degree of both intraspecific 
and intra-individual variation (Smith and van Staaden, 
2009). Here we use inter- and intraspecific contingency 
tables to analyze patterns of multimodal signal usage 
with visual/acoustic temporal coincidence as dependent 
variable. Simultaneous comparison of the audio-visual 
repertoire of four vocal species and two largely 
non-vocal species (Metriaclima zebra ‘katale’ and 
Melanochromis auratus) demonstrates that the correla-
tion between acoustic and visual behaviors varies across 
species (Pearson χ2 = 86.61, P < 0.0001, Fig. 3A). 
However, as is the case with the general call character-
istics reported above, the large degree of intraspecies 
variation effectively obscures the overall interspecies  
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Fig. 3  Distribution of audiovisual behaviors observed (A) across all six species, (B) between individuals of Melanochromis 
cyaneorhabdos, and (C) between individuals of Metriaclima lombardoi 
Encounters were staged between pairs of naive, mature conspecifics (dominant males and gravid females) in a full-access restrained choice arena. 

 
analysis. This variance effect is found in both genera, as 
demonstrated by Melanochromis cyaneorhabdos (Pear-
son χ2 = 82.00, P < 0.0001, Fig. 3B) and Metriaclima 
callainos (Pearson χ2 = 37.25, P = 0.0002, Fig. 3C). 
5.4  What does this variation mean? 

Taken together, the individual preferences for vocal 
or nonvocal displays, combined with the large variabil-
ity in acoustic characteristics, creates extraordinary po-
tential for signal diversity from individuals. In essence, 
during a single courtship bout encompassing a finite 
number of displays, an individual male can exploit sig-
nal variation along both unimodal and multimodal axes. 
There are two primary points of note here. Firstly, varia-
tion in both axes is mediated by the presence and struc-
ture of acoustic signals. And secondly, individual males 
can produce a range of signals that encompasses almost 
the entire observed species range. This raises the ques-

tion of how (and why) a single fish might produce such 
a broad array of signals. Furthermore, how might these 
plastic signals be interpreted by a receiver? Perhaps this 
encompasses a conflation of functions with signaling 
components less critical for species recognition (and 
more critical for conveying other information, such as 
male quality) being the ones that are more plastic than 
previously proposed. Alternatively, it might reflect the 
relative significance of different modalities at discrete 
separation distances of the interactants. 

6  Sources of Variability in Cichlid  
Signaling 

The assumption that signals provided by males have 
endogenous information content is pervasive in cichlid 
communication work. This is intuitive and likely correct 
for many signals that remain stable on a medium tem-
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poral scale, such as gross body coloration patterns, or 
bower shape and placement. However, for acoustic sig-
nals the lack of context specificity (Verzijden et al., 
2010; see their Fig. 4), limited support for species- 
specificity (Verzijden et al., 2010), extensive variation 
in individual acoustic repertoires (in 5 above; Simões et 
al., 2008), and lability of multimodal use (Smith and 
van Staaden, 2009), calls into question what exactly 
these signals convey. It suggests firstly, that we ought to 
entertain the notion that simple information transfer 
may not be the ultimate function, and secondly that sig-
nals are influenced by multiple factors. 
6.1  Alternative functions 

Beyond a simple information transfer view, we sug-
gest at least three plausible functions for signals in a 
courtship context. The overlap of display characteristics 
in agonistic and courtship behaviors is widely recog-
nized in African cichlids, with several visual compo-
nents, such as horizontal displays and quivers, common 
to both contexts (Baerends and Baerends-van Roon, 
1950), and with nuptial coloration of demonstrated sig-

nificance for male-male signaling during agonistic in-
teractions (Pauers et al., 2008; Seehausen and Schluter, 
2004). Rather than having intrinsic meaning related to 
any particular aspect of signal structure, supplementary 
acoustic signals in the context of courtship may serve to 
mediate this generalizable display (i.e., a metacommu-
nication function; Lewis and Gower, 1980). Alterna-
tively, acoustic signals may manipulate receiver behav-
ior via a startle effect to garner the attention of the fe-
male (Canfield, 2003). Or (more speculatively), the 
acoustic signal may serve to modulate or augment the 
apparent qualities of the visual signal by “hijacking” the 
inherent cognitive qualities of multisensory perception, 
e.g., via a form of the McGurk Effect (McGurk and 
MacDonald, 1976), or by expanding the perceived 
length of a quiver display (reviewed by Trout, 2001).  
6.2  External sources of lability 

Cichlid males face significant external challenges in 
acquiring mates. High densities and levels of aggression 
create intense competition for territory and mates as a 
result of their lekking behaviors. In such scenarios, 

 

Fig. 4  Heuristic of a motivational approach for the analysis of complex signaling 
1 Balshine-Earn and Lotem, 1998; 2 Rosenthal, 2000; 3 Saverino and Gerlai, 2008; 4 Baldauf et al., 2009; 5 Elliot, 2006; 6 Dunlop et al., 2006; 7 Yue et 
al., 2004; 8 Paul et al., 2005; 9 Braithwaite and Boulcott, 2007; 10 Braithwaite, 2006; 11 Pierotti et al., 2008; 12 Amorim and Almada, 2005. 
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selection for effective signaler-receiver communication 
is expected to be especially strong and result in the 
evolution of considerable diversity in signaling beha- 
viors (e.g., Uetz and Roberts, 2002). Local population 
density is known to influence behavioral sequencing 
during courtship (Fernald and Hirata, 1977), and minor 
environmental disturbances limit acoustic signaling in 
cichlids (Lanzing, 1974). 

The importance of male signal lability is apparent 
when considering the series of events that occur during 
a typical courtship bout in Lake Malawi. Generally, a 
male will approach a female passing his territory and 
perform a horizontal display involving the quivering 
and calling behaviors that compose the full audiovisual 
signal. Typically, the male gets a small number of hori-
zontal presentations in which to “impress” the female 
(~3–5; personal observation) and lure her back to his 
territory before she leaves. During this brief time, the 
male can employ an expansive repertoire of possible 
signals in order to impress his potential mate. A male’s 
tenure as a territory holder has been estimated to be as 
short as two weeks (Barlow, 2002b), although periods of 
up to 18 months have been reported (Hert, 1992). Thus, 
the male with the highest evolutionary fitness may very 
well be the one who invests the most energy in mate 
procurement, as opposed to resource or territory defense. 
This is supported by the lack of association between 
male coloration and indicators of male dominance (e.g., 
male size, territory size, and -location) in a wild popula-
tion (Maan et al., 2006).  
6.3  Internal sources of lability 

Interspecific variation would be most parsimoniously 
explained by fundamental differences in sound produc-
ing structures; the stridulation of pharyngeal jaws (Rice 
and Lobel, 2002, 2003) versus abdominal resonance via 
“rib-crunching” (Longrie et al., 2009). However, the 
pronounced similarity of the sounds presently described 
for African cichlids argues for a single common mecha-
nism. Cichlid adult brain variation is appreciable (Huber 
et al., 1997; van Staaden et al., 1995) and ecologically 
relevant differences identified in the elaboration of cich-
lid forebrain regions (Sylvester et al., 2010) are likely 
associated with the behavioral control and modulation 
of communication as well.  

Complexity may also increase ‘active time’. i.e. the 
period over which a signal influences a receiver's re-
sponse to that signal. Akre and Ryan (2010) showed that 
in túngara frogs, females do not consistently prefer 
greater complexity, but rather choice is due to differen-
tial memory. Female memory could thus favor the evo-

lution of increasing signal complexity through sexual 
selection. Other factors impacting mate-choice such as 
the audience effect and mate choice copying (Alonzo, 
2008), and receiver learning-based biases on signal 
evolution (ten Cate and Rowe, 2007), all introduce fur-
ther variability into the system. Comparative approaches 
are of limited value in such cases, since preferences 
emerging from the learning process are transient, and 
less likely to leave a phylogentically traceable effect. 
Finally, variable female preferences may impact the 
degree of variation and complexity in male signals if (i) 
females are unable to evaluate some necessary features 
(Parker and Kornfield, 1996); (ii) sequential female as-
sessment occurs (Werner and Lotem, 2006; Young et al., 
2010); or (iii) cryptic female choice by ‘sperm shop-
ping’ (Immler and Taborsky, 2009) drives complex sex-
ual selection. 

Taken together, the considerations outlined in sec-
tions 5 and 6 above support the notion that signaling 
plasticity is a fundamental trait of cichlid acoustic 
communication, and intraspecific variation in male sig-
naling patterns likely results in complex patterns of 
mate selection and motivations. 

7  Perspective: Cutting the Knot 
Animals behaving in complex, three-dimensional en-

vironments receive a large amount of information from 
external and internal receptor arrays. Since this infor-
mation feeds into motivational systems developed by 
evolution to generate experience, we propose addressing 
cichlid communication and speciation in a more com-
plex and socially-relevant paradigm. Adopting a moti-
vational approach to the communication landscape ex-
perienced by cichlid fishes should prove illuminating.  

Mate choice tests in an artificial choice paradigm are 
deceptively simple, with alternatives measures (in de-
creasing order of confidence) ranging from spawning 
(Kidd et al., 2006); most courtship-, more time near-, or 
orientation toward- a potential mate (Barlow, 2002b). 
The literature is replete with variations on this theme, 
employing factorial design behavioral experiments, or 
cue-elimination and cue-conflict designs to dissect mul-
timodal signaling and weigh the relative contributions 
of the various modalities in attracting females. Com-
parative approaches using closely related species 
(Verzijden et al., 2010), or geographically isolated popu-
lations (Elias et al., 2006), can be informative, as can a 
combination of lab and field studies in sorting out 
systematic problems (e.g., Holzburg, 1978 for Metria-
clima zebra). While such strategies have proven highly 
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effective for invertebrates (Hebets and Uetz, 1999; Ryp-
stra et al., 2009; Uetz and Roberts, 2002) their utility for 
vertebrates is less clear.  

Multiple presentations of a specific stimulus rarely 
evoke identical responses, even under rigorously speci-
fied environmental conditions (cf. “The Harvard rule of 
Animal Behavior”, Grobstein, 1994). Thus, altered re-
sponses must be attributed to changes in internal state 
(“motivation”) of the individual. Traditionally, motiva-
tions were viewed as an array of individual, unitary 
properties corresponding to broad behavioral categories 
such as parental care or fighting (Tinbergen, 1951) col-
lectively interacting to guide behavior, through a “great 
parliament of instincts” (Lorenz, 1966). While the clas-
sical ethological model of motivation has lost much of 
its explanatory value and been superseded by a more 
complex, multi-dimensional view (Huber and Kravitz, 
1995; Huber et al., 2001), the term remains for want of a 
better alternative. Here the motivational state simply 
represents intrinsic forces that promote the occurrence 
of defined sets of behaviors within adaptive contexts, 
without implying a specific underlying framework (e.g., 
psychohydraulic model - Lorenz, 1966; neuro-evolutionary 
constructs - MacLean, 1990; Panksepp, 1998, 2003). 

8  Affective States and Cognitive  
Processing 

Responding to mating signals in a manner which is 
contingent on a multiplicity of internal, social, ecologi-
cal, and/or environmental conditions, is both appropriate 
and adaptive. Mate choice tests of cichlids in a lab set-
ting, indeed, provide highly variable outcomes (Barlow, 
1998; Verzijden et al., 2010, Fig 3). Analysis of the 
processes underlying this variation is problematic since 
discrimination can decrease either because the task is 
too difficult, or because the animal is too motivated 
(Barlow, 2002a).   

We suggest that a learning paradigm may be more il-
luminating of the flexibility and variability involved in 
complex signaling, and that an animals motivation to 
work for access to various stimuli can provide an effec-
tive compromise between system complexity and prac-
tical simplicity. Moreover, it has the virtues of (i) per-
mitting a continuous measure which is more informative 
than a binary one; (ii) allowing one to quantitatively 
separate out the specificity and sensitivity of signal 
components (using conditioning experiments); (iii) 
permitting one to assess both preference functions and 
choosiness; and (iv) offering the potential to distinguish 
affective from cognitive processes by combining these 

sensitive behavioral measures with an understanding of 
their underlying brain substrates.  

The nexus of motivation-emotion, SEEKING (Pank-
sepp, 1998), and learning-based bias is well-recognized 
in humans where changes in emotional state are ac-
companied by concurrent changes in information proc-
essing (Clore and Ortony, 2000; Mathews and MacLeod, 
1994). Such cognitive biases are now recognized also in 
rodents and birds (Emery, 2006; Harding et al., 2004). 
The neural interface between limbic and motor systems 
by which ‘motivation’ gets translated into 'action' are 
remarkably similar in both affective neurochemistry and 
neuroanatomy across all vertebrate taxa (Goodson and 
Bass, 2001) cf. the distribution of cannabinoid receptors 
in cichlids (Cottone et al., 2005). Recently researchers 
have begun to quantify motivational affective states in 
fish in the context of animal welfare (Braithwaite and 
Boulcott, 2007; Paul et al., 2005) and higher order cog-
nitive processing (Braithwaite, 2006), using startle re-
sponses (Arnott and Elwood, 2009), or associative 
learning conditioning paradigms (Dunlop et al., 2006; 
Elliot, 2006; Yue et al., 2004). 

We propose that an associative conditioning para-
digm with positive reward will be a fruitful mechanism 
to assess the relative value of complex signals in driving 
cichlid mate preferences. In African cichlids, visual ac-
cess to a conspecific has been shown to be rewarding 
(i.e., a positive stimulus), and modulates a conditioned 
response based on the intensity of the stimulus (T. 
Kitchin, unpubl. obs.). The technology for assessing 
motivation in an associative learning paradigm is read-
ily available (Rosenthal, 2000). Video playbacks contain 
sufficient information to facilitate recognition in Neo-
lamprologus brichardi (Balshine-Earn and Lotem, 1998), 
and computer-animated fishes (Baldauf et al., 2009; 
Saverino and Gerlai, 2008) permit precise tailoring of 
stimuli with respect to all aspects of visual signaling. 
With the exception of chemical and low frequency 
mechanosensory stimuli, for which temporal and spatial 
resolution remains a challenge, combining automated 
digital video tracking and computer-animated stimuli 
should accommodate any combination of multisensory 
signals and levels of lability required at both individual 
and higher taxonomic levels.   

9  Conclusion 
Models of communication have moved beyond the 

discrete exchange of information pioneered by Shannon 
and Weaver (1949) to encompass a view of communica-
tion as a creative and dynamic continuous process (e.g., 
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transactional models - Barnlund, 2008; theories of 
co-regulation - Gallese, 2005). In the case of cichlids, 
we advocate a return to the motivational approach, har-
nessing the power of automated stimulus generating and 
tracking techniques, to overcome the limitations inher-
ent in the traditional choice paradigm. Such an approach 
is appropriate and effective because we know cichlids 
have complex brains generating complex cognition 
(Huber et al., 1997; van Staaden et al., 1995), whereby 
both learning (Verzijden and ten Cate, 2007) and expe-
riential effects (Amorim and Almada, 2005; Kotschal 
and Taborsky, 2010) lead to variability. In this way, the 
field of cichlid behavioral research might advance by 
returning to its classic ethological roots. 
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