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ABSTRACT: The biogenic amine serotonin [5-hy-
droxytryptamine (5-HT)] has received considerable at-
tention for its role in behavioral phenomena throughout
a broad range of invertebrate and vertebrate taxa. Acute
5-HT infusion decreases the likelihood of crayfish to
retreat from dominant opponents. The present study
reports the biochemical and behavioral effects resulting
from chronic treatment with 5-HT-modifying com-
pounds delivered for up to 5 weeks via silastic tube
implants. High performance liquid chromatography
with electrochemical detection (HPLC-ED) confirmed
that 5,7-dihydroxytryptamine (5,7-DHT) effectively re-
duced 5-HT in all central nervous system (CNS) areas,
except brain, while a concurrent accumulation of the
compound was observed in all tissues analyzed. Unex-
pectedly, two different rates of chronic 5-HT treatment
did not increase levels of the amine in the CNS. Behav-

iorally, 5,7-DHT treated crayfish exhibited no significant
differences in measures of aggression. Although treat-
ment with 5-HT did not elevate 5-HT content in the
CNS, infusion at a slow rate caused animals to escalate
more quickly while 5-HT treatment at a faster rate
resulted in slower escalation. 5,7-DHT is commonly used
in behavioral pharmacology and the present findings
suggest its biochemical properties should be more thor-
oughly examined. Moreover, the apparent presence of
powerful compensatory mechanisms indicates our need
to adopt an increasingly dynamic view of the serotoner-
gic bases of behavior like crayfish aggression. © 2002
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INTRODUCTION

Aggression is a key element in the natural behavioral
repertoire of most decapod crustacean species (Ber-
rill, 1978; Berrill and Arsenault, 1984; Karnofsky et
al., 1989). Even in the absence of an obvious resource,

initial contact between two conspecifics is followed
by a series of agonistic bouts that vary in length until
one participant withdraws (Bovbjerg, 1953; Scriv-
ener, 1971; Rubenstein and Hazlett, 1973; Bruski and
Dunham, 1987). Encounters progress towards more
intense stages of fighting in a step-wise fashion where
decisions to escalate the encounter or retreat govern
the temporal and probabilistic nature of subsequent
behavior patterns (Huber and Kravitz, 1995; Huber et
al., 2001a). In a majority of instances, physical supe-
riority constitutes the primary determinant of fight
length and outcome (Bovbjerg, 1956; Rubenstein and
Hazlett, 1973; Pavey and Fielder, 1996; Barki et al.,
1997; Vye et al., 1997). However, there are important
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caveats to viewing this behavioral framework too
simplistically. For instance, previous experience, in
the form of social conditioning, diminishes the initial
bias of morphological asymmetries in claw and body
size (Daws et al., 2001). Moreover, as crayfish hier-
archies differentiate, the aggressiveness and overall
success of participants converge on distinct, linear
ranks due to a process of self-assembly (Goessmann
et al., 2000). Nevertheless, once social status becomes
established, subsequent fighting dwindles and de-
feated animals avoid further contact with winners
(Issa et al., 1999; Goessmann et al., 2000). The fun-
damental characteristics of this behavioral scheme
closely match predictions of game theory (Maynard-
Smith and Price, 1973; Parker and Rubenstein, 1981;
Enquist and Leimar, 1983; Austad, 1989) and are thus
ideal for quantitative behavioral analysis (Huber and
Kravitz, 1995; Huber et al., 2001a).

Decapod crustaceans have proven to be useful
models for exploring proximate mechanisms in ag-
gression (Antonsen and Paul, 1997; Krasne et al.,
1997; Yeh et al., 1997; Huber and Delago, 1998;
Sneddon et al., 2000; Tierney, 2000; Doernberg et al.,
2001). Initial studies illustrated that direct injection of
substantial amounts of 5-HT into the hemolymph (i.e.,
blood) of lobsters and crayfish resulted in a posture
resembling “meral spread”—a common display of
dominant animals (Livingstone et al., 1980). Subse-
quently, a small population of 5-HT-containing neu-
rons was identified (Beltz and Kravitz, 1983; Real
and Czternasty, 1990) and has since been extensively
characterized (Beltz and Kravitz, 1987; Ma et al.,
1992; Ma and Weiger, 1993; Heinrich et al., 1999). A
subset of these neurons has both central and periph-
eral effects on muscle flexion (Kravitz et al., 1984;
Harris-Warrick and Kravitz, 1984), may enhance the
occurrence of “dominant-like” postures (Ma et al.,
1992; Kravitz, 2000), and is activated by command
circuits that control tail flip—a common escape be-
havior (Hörner et al., 1997). Mediated through lateral
giant neurons, the latter mechanism exhibits 5-HT-
induced activity that varies inversely as a function of
social status (Glanzman and Krasne, 1983; Yeh et al.,
1996, 1997). Infusion of somewhat smaller amounts
of 5-HT into freely moving lobsters and crayfish
produces a renewed willingness to fight their larger,
dominant opponents, and 5-HT reuptake is an impor-
tant underlying mechanism for such behavioral rever-
sals (Huber et al., 1997a,b; Huber and Delago, 1998).
In crayfish and lobsters, chronic treatment with flu-
oxetine is accompanied by an expected increase in
aggressive behavior, but the behavioral effects are
less pronounced compared to those produced by acute

5-HT infusion, and they do not persist across the
duration of treatment (Delago et al., in review).

Consistent with evidence in the crustacean species
mentioned above, 5-HT is implicated in the neuro-
chemical control of aggression throughout a broad
range of taxa (Maas, 1962; Kostowski et al., 1975;
Maler and Ellis, 1987; Blanchard et al., 1991; Raleigh
et al., 1991; Reisner et al., 1996; Dyakonova and
Schürmann, 1999; Lesch and Merschdorf, 2000; Lar-
son and Summers, 2001). Attempts to explain such
relationships have centered predominantly on 5-HT’s
presence or absence, and thereby its putative function
in aggression and social dominance. Although often
assumed to extend from evidence derived in acute
experimental situations, the neurochemical mecha-
nisms underlying long-term changes in aggressive
motivation (Van De Poll et al., 1982; Jackson, 1991;
Chase et al., 1994; Hollis et al., 1995; Whitehouse,
1997; Hsu and Wolf, 1999; Issa et al., 1999; Goess-
mann et al., 2000) have received comparatively little
attention. Of the studies that have addressed such
issues directly (e.g., Winberg and Nilsson, 1993;
Kudryavtseva and Avgustinovich, 1998; Stribley and
Carter, 1999), general agreement converges on the
dynamic neurochemical processes that parallel long-
term changes in aggressive state. Moreover, studies
ranging from learning (Montarolo et al., 1986; Dale et
al., 1987) and aggression (Yeh et al., 1996, 1997;
Flugge et al., 1997; Kudryavtseva and Avgustinovich,
1998) to drug use (Robinson and Berridge, 1993;
Bradbury, 2000; Koob and Le Moal, 2001) and de-
pression (Hjorth and Auerbach, 1996; Blier and de
Montigny, 1999) indicate an inherent, temporal com-
plexity for studying the role of monoamines in behav-
ioral plasticity.

In crayfish, the time course and potential reversal
of 5-HT’s aggression enhancing effects have not yet
been thoroughly examined. Recent experiments with
chronic fluoxetine treatments have underscored the
need to carefully explore the time frame of serotoner-
gic plasticity concomitant to changes in decapod ag-
gressive motivation (Delago et al., in review). In the
present article, we report experiments that examine
the neurochemical basis of crustacean fighting behav-
ior in the crayfish, Orconectes rusticus. Dyadic ago-
nistic encounters were analyzed following different
lengths of chronic exposure to silastic tube implants
containing 5-HT, 5,7-DHT, or �-methyltryptophan
(AMTP). The effects of 5-HT release were addition-
ally explored by varying the rate of delivery. Follow-
ing behavioral trials, changes in nervous system levels
of 5-HT were measured with high performance liquid
chromatography with electrochemical detection
(HPLC-ED).
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MATERIALS AND METHODS

Crayfish

Crayfish (O. rusticus) from the Portage River near Bowling
Green State University were socially isolated in individual
containers (Ø 0.17 m, 0.1 m depth) for at least 7 days prior
to behavioral trials. Only intermolt males (5.0–26.6 g) with
intact appendages were used. Individual containers were
maintained in fiberglass trays (2.0 � 0.7 � 0.1 m) supplied
continuously with freshly filtered and aerated water (20°C)
from a main holding reservoir. All animals were fed twice
a week and maintained under a 16:8 h light/dark cycle.

Pharmacological Treatments

Sections of silastic tubing (Ø 0.635 mm; Konigsberg Instru-
ments, Inc.) were cut to a length of 15 mm and loaded with
crystals of 5,7-DHT creatinine sulfate (FW: 403.4; Sigma
D-0136 or Fluka 37970), AMTP (FW: 218.3; Sigma
M-8377), 5-HT creatinine sulfate (FW: 387.4; Sigma
H-7752), or left empty in the control group. All tubes were
occluded at one end with 734 Flowable Sealant (Dow Corn-
ing). A fifth group (5-HT “slow”) received tubes also loaded
with 5-HT, but which had both ends of the tube sealed
(compared to the 5-HT “fast” treatment that had only one
end sealed). Differences in the rate of release between 5-HT
treatments were confirmed by placing loaded tubes into 30
mL of 125 mM saline. Samples were taken over 1 week (ca.
every 36 h) and assayed for 5-HT with HPLC-ED (see
below). 5-HT remained intact within the tubes and was
released continuously at stable rates in both 5-HT slow
[F(1, 4) � 11.01; p � .05] and 5-HT fast [F(1, 4)
� 13.39; p � .05] conditions. Rates of infusion were
measured as 0.6 �g/h and 7.8 �g/h for 5-HT slow and 5-HT
fast, respectively. Such treatments were expected to serve as
a major challenge to aminergic systems. For instance, the
total amount of serotonin infused (400 �g) over 4 weeks in
the 5-HT slow condition exceeded natural levels (9.4
� 0.85 ng) by 40,000 times.

Before implanting each tube, crayfish were anesthetized
in ice for 10 min. An 18.5 gauge needle was used to make
a small incision in the abdominal cuticle directly behind the
most posterior ambulatory leg. With a pair of forceps, the
silastic tube was inserted into the opening and guided into
the thoracic body cavity. Subsequently, animals were placed
in an observation aquarium and allowed to recover from the
treatment. Within minutes, all animals exhibited normal
activity and exploratory behavior, and no deaths resulted
from such treatment. Animals were returned to their con-
tainers and maintained as previously described.

Profiles of Pharmacological Compounds

5,7-DHT is widely used to deplete 5-HT. It acts as a classical
neurotoxin in vertebrates by destroying 5-HT-containing cells,
presumably through a build up of free radicals produced by its
intracellular actions with monoamine oxidase (MAO; Klemm

et al., 1979). However, neither MAO (Boadle and Blaschko,
1968; Dewhurst et al., 1972; Sloley and Goldberg, 1991;
Sparks and Geng, 1992) nor 5-hydroxyindolacetic acid, the
primary metabolite of 5-HT oxidation (Kennedy, 1978; Dub-
bels and Elofsson, 1989), appear to be present in many inver-
tebrates, including crustaceans. Moreover, there is strong evi-
dence indicating that invertebrate 5-HT neurons retain all
functional membrane properties after treatment with 5,7-DHT
(Lent and Dickinson, 1984; Cook and Orchard, 1993; Heinrich
et al., 1999). Nevertheless, numerous studies of invertebrates
have demonstrated that treatment with 5,7-DHT results in
robust depletions of 5-HT (Livingstone et al., 1981; Lent,
1984; Lent and Dickinson, 1984; Glanzman and Krasne, 1986;
Cook and Orchard, 1993; Sahley, 1994; Benton et al., 1997;
Doernberg et al., 2001).

Likewise, AMTP has been used to evaluate the behav-
ioral effects produced by depletion of 5-HT in the inverte-
brate CNS (Novak and Rowley, 1994; Dyakonova and
Schürmann, 1999; Stevenson et al., 2000). AMTP leads to a
general decrease in 5-HT synthesis by way of �-methylated
amino acid substitutions (Sloley and Orikasa, 1988).

Quantitative Neurochemical Analysis

To verify the effects of pharmacological treatments we
obtained neurochemical profiles for individuals with HPLC-
ED (see Table 1). After the end of each behavioral trial (see
below), the experimental animal was immediately anesthe-
tized in ice for 30 min. The animal was then sacrificed and
its entire ventral nerve cord (i.e., CNS) was removed in four
sections: (A1–A6) all abdominal ganglia, (T1–T5) all tho-
racic ganglia, (SEG/CEG) subesophageal/circumesophageal
ganglia, and (SUP) supraesophageal ganglion (i.e., brain).
Tissues were placed into a 1.5 mL microfuge tube contain-
ing 200 �L 0.1 N perchloric acid, mechanically disrupted
(Kontes motor driven pelleting tool equipped with a Te-
flon™ pestle), and cellular debris and denatured proteins
were pelleted with a tabletop centrifuge (Capsulefug, 6200
RPM, 15 min). Twenty-microliter aliquots (diluted 10–100-
fold with mobile phase) were separated on a C18 column
(Spherisorb ODS2, 3 �m, 100 � 4.6 mm), with further
details reviewed elsewhere (Panksepp et al., 2002).

The mobile phase contained 50 mM sodium phosphate
(6.9 g/L monobasic anhydrous; FW: 120.0; Sigma S-0751),
5 mM heptanesulfonic acid (1 g/L sodium salt; FW: 202.2;
Sigma H-2766), and v/v 16% MeOH and 4% acetonitrile as
organic modifiers. The final solvent buffer was adjusted to
pH 3.25 with concentrated phosphoric acid (ACS reagent;
FW: 98.0; Sigma P-6560), filtered through a 0.22 �m filter,
and operated at ambient temperature with a flow rate of 1.5
mL/min. Eluted compounds were detected electrochemi-
cally on a BAS LC-4C single-cell, amperometric detection
system. The detector potential was set to 500 mV. Chro-
matograms were recorded with analog/digital converter
(MacLab) and strip-chart software (MacLab Chart v3.3.3)
on an Apple Macintosh computer. The size of eluting peaks
was analyzed with chromatography software (MacLab
Peaks v1.3.1). Identification of 5-HT was based on compar-
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ison with external standards by retention time under several
different mobile phase conditions. Known standards were
dissolved to a final concentration (5 pg amine/�L) in mobile
phase from a stock solution each day. The detection limit
was 3–5 pg 5-HT injected on column. Recovery rates were
close to 100% and no further correction was applied. 5,7-
DHT standards were also prepared as described above and
included for the analysis of crayfish treated with this com-
pound. Standards were injected every five samples, and at
the beginning and end of each day.

Quantitative Behavioral Analysis

Following different lengths of drug exposure, treated
crayfish were size-matched (i.e., � 5% difference in body
weight) against randomly selected opponents (see Table 1).
The behavioral analysis followed standard procedures used
in our lab as detailed below (reviewed in Huber et al.,
2001a). Both animals were placed in a Plexiglas™ obser-
vation tank (0.45 � 0.31 � 0.15 m) that received continu-
ous flow of freshly filtered and aerated water through evenly
spaced pairs of in/out holes. Initially, an opaque Plexiglas™
divider separated opponents for a 10 min acclimation pe-
riod. The divider was then raised and each trial videotaped
for 30 min (Sony DCR-TR7000 digital video camera). De-
sign and size of this arena were guided by observations of
agonistic interactions in the field. O. rusticus reach densities
in excess of 50 individuals/m2 at our collecting sites near
Bowling Green, OH (unpublished observation) and are rou-
tinely observed fighting in shallow, shelterless pools with
similar sizes and features to those used in the present study.

Behavioral measures were scored for all interactions that
took place during 30 min trials. For each interaction the
identities of the initiating and retreating animals, fight du-
ration, maximum intensity reached, and the frequency of the
highest intensity level (i.e., level 4) were scored. An inter-
action was defined as the point when the approaching ani-
mal came to within one body length of the opponent and
its presence was overtly reacted to. Fighting intensity was
coded on an ordinal scale: (0) no contest—one animal

retreats without challenge; (1) threat displays or “meral
spread”—both animals contest the interaction without phys-
ically touching the opponent; (2) restrained use of claws—
both animals contest and at least one individual is antenna
whipping and/or pushing its opponent without grabbing; (3)
clawlock—both animals contest and at least one individual
uses claws to grab and wrestle with opponent; and (4)
unrestrained combat or “strike and rip”—brief periods char-
acterized by the attempt of one animal to tear an appendage
from its opponent. When one animal retreated from its
opponent by at least one body length and remained separate
for at least 5 s, it was considered the end of the interaction.

Statistical Evaluation of Neurochemistry
and Behavior

Analysis of variance was used to test for differences in all
continuous variables (e.g., fight duration, frequency of in-
tensity level 4, and 5-HT content of all CNS tissues). To
reduce heteroscedasticity (i.e., inequality of variances
among treatment groups) a logarithmic transformation was
applied to 5-HT content. Posthoc comparisons were ex-
plored with Tukey-Kramer HSD tests.

Following the establishment of social relationships, win-
ning crayfish become more likely to initiate while losers
become more likely to retreat (Issa et al., 1999; Goessmann
et al., 2000), and thus such measures will lack indepen-
dence. This dominance-associated behavioral polarity is
apparent within three interactions and remains stable during
fighting periods (Goessmann et al., 2000). To eliminate such
lack of independence in our analyses, we restricted our
analyses to those interactions that occurred prior to “estab-
lished dominance”—operationally defined as the first inter-
action after which the identity of both initiating and retreat-
ing animals remained unchanged in subsequent interactions.
Differences in initiation, retreat, and number of fights reach-
ing a particular maximum intensity were compared with
G-tests, and overall significant effects were explored with
Freeman-Tukey deviates (FTD).

Table 1 Descriptive Statistics for Crayfish Used in Behavioral Trials and HPLC-ED Analysis

5,7-DHT AMTP Control 5-HT “Slow” 5-HT “Fast”

Treatment
Weight 13.6 � 1.69 g 13.2 � 1.64 g 8.7 � 0.45 g 11.1 � 2.20 g 13.1 � 1.29 g
Duration 5–16 days 12–26 days 21–30 days 21–30 days 4–23 days

Behavioral trials
n 8 6 5 4 5
# Interactions 100 65 63 26 65

HPLC-ED analysis
n 8 8 35* 7 5

Numbers reported for weight are means � standard error. In a few cases, crayfish were used for HPLC-ED analysis, but were not used in
behavioral experiments. This accounts for the discrepancy in sample sizes (n) for treatment groups between behavioral and HPLC-ED analyses.

* Thirty additional animals that were not experimentally manipulated were included in the control group for a more accurate measure of
standard crayfish CNS 5-HT content. There were no statistically significant differences between untreated and control animals, or between
body weight and amine content.
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Understanding how different behaviors covary as interre-
lated behavioral dimensions has proven useful in our previous
studies of fighting behavior in decapod crustaceans (Huber and
Kravitz, 1995; Huber et al., 2001a; Stocker and Huber, 2001;
Schroeder and Huber, 2002). For example, when agonistic
encounters between decapods last longer they inevitably esca-
late to higher intensities (Huber et al., 1997b; Huber and
Delago, 1998; Goessmann et al., 2000). In this set of experi-
ments, we used whole-model regression analysis to measure
the effects of duration, treatment, and their interaction on
maximum intensity. The resulting slope (i.e., the regression
coefficient) provides an estimate for the average rate of esca-
lation during a fight. Differences in the rate of escalating were
evaluated by the interaction term (duration � treatment) and

95% confidence intervals of each regression coefficient were
used to identify differences between experimental groups.

RESULTS

Neurochemistry

Significant differences in 5-HT (Fig. 1) were detected
for A1–A6 [F(4, 53) � 10.46; p � .001], T1–T5
[F(4, 51) � 34.95; p � .001], and SEG/CEG [F(4,
52) � 69.94; p � .001]. 5,7-DHT treated animals
had significantly lower levels of 5-HT in A1–A6,

Figure 1 Graph of 5-HT content (means � standard error) for different experimental groups
plotted on log-scale: (a) SUP, (b) SEG/CEG, (c) T1–T5, and (d) A1–A6. Significant Tukey-Kramer
HSD tests are indicated with asterisks. In the 5,7-DHT treated group, all tissues except SUP were
significantly lower than controls.
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T1–T5, and SEG/CEG compared to controls ( p
� .05 for all posthoc tests). 5-HT content in SUP was
not altered by 5,7-DHT [F(4, 52) � 1.54; p � .2].
Results of AMTP treatment are not reported as it
neither lowered 5-HT in CNS tissues (except abdom-
inal ganglia) nor produced behavioral effects.

Depletion of 5-HT was evident in 5,7-DHT treated
animals after 5 days of treatment and persisted for
over 16 days (Fig. 2). No obvious qualitative pattern
arose from different lengths of exposure to 5,7-DHT
as affected tissues exhibited similar amounts of 5-HT
depletion across the entire range of exposure periods.
All 5,7-DHT treated crayfish contained considerable
amounts of 5,7-DHT in every individual CNS seg-
ment (mean � standard error): (A1–A6) 4.6 � 1.24
ng, (T1–T5) 9.9 � 3.89 ng, (SEG/CEG) 4.0 � 1.02
ng, and (SUP) 2.0 � 0.33 ng (Fig. 3). As 5,7-DHT

may serve as a 5-HT receptor ligand (see Discus-
sion), the CNS of 5,7-DHT treated crayfish may
have thus contained elevated amounts of “neuroac-
tive” molecules [measures of 5-HT and 5,7-DHT
combined F(4, 51) 13.43; p � .001]. No significant
differences in 5-HT content were found in CNS
tissues that were exposed to 5-HT at different rates
(see Fig. 1). 5-HT content was generally elevated
after short periods of exposure to 5-HT fast tubes,
but tended to return to control levels following
longer treatment (see Fig. 2).

Behavior

Table 2 summarizes statistical tests performed on all
behavioral measures. Significant effects were found

Figure 2 Scatter plots depict the amount of 5-HT (pg) as a function of treatment duration (days).
Data points represent individual tissues with treatment groups arranged in columns and tissues
arranged in rows.
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for the identity of the initiating [G(4) � 13.42; p
� .01] but not the retreating [G(4) � 4.47; p � .4]
animal. Decreased probability (FTDcrit � �1.23) to
initiate fights was found in opponents of 5-HT slow

treated crayfish (FTD � �1.54). Moreover, the num-
ber of interactions reaching a particular fight intensity
depended on experimental condition [G(8) � 27.96;
p � .001]. Low fight intensities were observed in

Figure 3 Sample chromatograms for (a) an external standard, T1–T5 tissue from (b) a control
animal, and individuals treated with (c) 5,7-DHT and (d) 5-HT “slow.” Substances are identified
based on elution times across a range of mobile phase conditions: (DA) 116–120 s, (5,7-DHT)
198–202 s, and (5-HT) 290–294 s. Note the presence of a conspicuous peak (a likely 5-HT
metabolite) that appears soon after the elution of DA.
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fewer instances than expected (FTDcrit � 1.43) in
trials involving 5-HT slow treated crayfish (FTD
� �3.14). No significant differences (Fig. 4) were
found between treatment groups for fight duration
[F(4, 314) � 1.06; p � .4] or for the frequency of
unrestrained combat [intensity 4; F(4, 314) � 0.44;
p � .8]. Moreover, to account for the high degree of
interrelatedness between fight duration and intensity
(Spearman’s r � 0.59 and see below) MANOVA
was performed. No significant differences in fighting
behavior were apparent [Wilks’ Lambda � 0.99, F(4,
314) � 1.07; p � .4].

Duration predicted the maximum intensity of in-
teractions [F(4, 309) � 152.74; p � .001] and also
accounted for a large amount of the total variation in
fight intensity (r2 � 0.35). In addition, significant
treatment [F(4, 309) � 3.36; p � .01] and inter-
action [duration � treatment; F(4, 309) � 8.11; p
� .001] effects were detected. The slope of each
regression line, which measures the average rate of
escalation, varied considerably across treatment
groups. Compared to all other treatment groups, 5-HT
fast escalated more slowly while 5-HT slow treated
crayfish escalated more rapidly (Fig. 5).

DISCUSSION

The biochemical and behavioral effects reported in
this article did not result in a single, clear pattern, and
thus interpretation becomes complex when such lev-
els of analysis are considered simultaneously. The
present findings suggest changes in nervous system
function that occurred at levels of organization out-
side the focus of our experimental design. Three po-

tential, albeit not mutually exclusive, explanations for
the results of the present study are discussed.

Anatomical Location of Serotonin
Neurons Involved in Decapod
Aggression

Previous work implicates neurohormonal modulation
as one mode of action for 5-HT in crustacean aggres-
sion (Beltz and Kravitz, 1987; Kravitz, 2000). 5-HT is
released into the circulation from neurosecretory ter-
minals originating in the first abdominal (A1) gan-
glion (Beltz and Kravitz, 1987), allowing it to poten-
tially affect many areas concurrently (Pasztor and
Bush, 1989; Glusman and Kravitz, 1982; Listerman et
al., 2000; Santos et al., 2001). Mediated through an
apparent change in activity of neurons involved in
aggressive motivation, raising concentrations of 5-HT
in the hemolymph fosters a decreased willingness to
retreat in subordinate crayfish and lobsters (Huber et
al., 1997a,b, 2001b; Huber and Delago, 1998).

In the current study, the collective lack of behav-
ioral effects measured in individuals depleted of 5-HT
in the A1 ganglion demonstrates that, at this site,
decreasing levels of 5-HT does not by itself prevent
the normal expression or utility of agonistic behav-
iors. Large reductions in 5-HT, however, were not
found in all CNS tissues. For instance, 5-HT content
in the supraesophageal ganglion was particularly re-
sistant to chronic treatment as it was unaffected in all
treatment conditions. HPLC/ED detected the presence
of 5,7-DHT in every tissue, including the suprae-
sophageal ganglion, suggesting that, relative to other
CNS tissues, crayfish brain is resistant to such phar-
macological intervention. It also indicates that failure

Table 2 Results from Statistical Tests Performed on Behavioral Variables

Variable Source df SS or -LLH F or G p

Initiate -LLH 4 6.71 13.42 �.01*
error 28 16.02

Retreat -LLH 4 2.23 4.47 .346
error 38 27.47

Duration ANOVA 4 19000.80 1.06 .374
error 314 1401742.90

Max. intensity -LLH 8 13.98 27.96 �.001*
error 308 317.08

# Intensity 4 ANOVA 4 0.53 0.44 .777
error 314 92.92

Whole model duration 1 184.82 152.74 �.001*
regression treatment 4 16.28 3.36 .01*

dur. � treat. 4 39.25 8.11 �.001*

An � of �.05 was considered significant.
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to alter 5-HT content in crayfish brain is not simply
due to the existence of a functional blood brain bar-
rier. Treatment may, however, have potentially in-
duced changes at a variety of other levels including
synaptic availability (Doernberg et al., 2001) or the

recruitment of non-5-HT neurons (Beltz et al., 1998;
Musolf and Edwards, 2000).

5-HT neurons in decapod crustacean brain have
been identified (Beltz and Kravitz, 1983; Sandeman
et al., 1988) and studied (Sandeman and Sandeman,

Figure 4 Measures of aggression were largely unchanged by experimental treatments. (a) Total
number of interactions observed is plotted on the ordinate: (5,7-DHT) n � 100 in eight trials,
(control) n � 63 in five trials, (5-HT “slow”) n � 26 in four trials, and (5-HT “fast”) n � 65 in
five trials. The number of fights reaching a particular intensity is represented with different shades.
Intensities were pooled to reduce empty cells in statistical analyses: (No contest) intensity 0, (low
intensities) intensity 1 or 2, and (high intensities) intensity 3 or 4. (b) Average duration of
interactions for experimental groups.
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1994; Benton et al., 1997), although their individual
roles during agonistic encounters have not yet been
explored. In our experiments, failure to alter 5-HT in
the brain could account for the lack of behavioral
effects found in 5,7-DHT treated crayfish. Key sites in
the brain, such as the dorsal giant neurons (Benton et
al., 1997; Benton and Beltz, 2001), are likely to be
important during such situations—keeping in mind
that complex behaviors like aggression presumably
cannot be reduced to a single anatomical site or neu-
rochemical substrate. Such “higher” brain areas may
exert descending influence on postural systems or
neurosecretory sites. Future studies are therefore
needed to identify specific behavioral effects of 5-HT
associated with the supraesophageal ganglion.

Does 5,7-DHT Have “Neuroactive”
Properties in the Crustacean
Nervous System?

Acute injection of 5,7-DHT into decapod crustaceans
elicits a posture resembling the “dominant-like”
stance characteristic of 5-HT injections (Livingstone
et al., 1980; Glanzman and Krasne, 1986; Antonsen
and Paul, 1997). Such results could be due to 5,7-
DHT’s releasing properties (Cook and Orchard, 1993)
or an agonist-effect at 5-HT binding sites. At least at
some synapses, however, different physiological ef-
fects result from application of 5-HT and 5,7-DHT.
5,7-DHT produces modest depolarization of specific
neurons in the A1 ganglion (Doernberg et al., 2001),
while 5-HT mediates comparatively stronger depolar-
izing activity followed by periods of prolonged inhi-
bition (Heinrich et al., 1999). Nevertheless, 5,7-DHT
treatment reduces 5-HT content in decapod CNS (cf.
Doernberg et al., 2001 and this article). With regard to
the present experiments, however, care must be in-
voked when interpreting the general lack of behav-
ioral effects accompanying such depletions. Namely,
is reducing 5-HT levels (with 5,7-DHT treatment)
equivalent to depressing 5-HT function? The present
results raise the caveat that nonspecific actions of
5,7-DHT, at least to an extent, may counterbalance its
depleting effect on 5-HT content.

Compensatory Responses to
Pharmacological Interventions

The complex array of physiological and behavioral
results illustrated in this study indicate that no simple
pattern links long-term changes in 5-HT levels and
fighting behavior. For instance, neither 5-HT treat-
ment significantly altered 5-HT content in the CNS,
although such treatments produced opposite effects on
the rate of fight escalation. Resistance in altering
5-HT levels due to chronic pharmacological interven-
tion may result from the system’s ability to maintain
a homeostatic set point (i.e., a functional balance).
The existence of compensatory mechanisms is con-
sistent with similar reports of failure to disrupt 5-HT
levels in the brain of a sea slug, Tritonia diomedea
(Fickbohm et al., 2000), where 5-HT was uninflu-
enced by most pharmacological treatments although
its precursors and metabolites were. The notion that
“appropriate” levels of 5-HT are needed for a given
site and time (Doernberg et al., 2001) corroborates the
suggestion that crustacean 5-HT systems can compen-
sate to maintain functional integrity. Moreover, com-
pensatory feedback between monoamine systems and
chronic biochemical intervention has been demon-

Figure 5 The slope (i.e., regression coefficient) of each
regression line represents the average rate of escalation and
provides an estimate for the maximum intensity of an ago-
nistic encounter given a certain duration. (a) The linear
regression functions for each experimental group were:
(5,7-DHT) y � 0.843 � 0.017 x, (control) y � 0.668
� 0.018x, (5-HT “slow”) y � 0.334 � 0.031x, and
(5-HT “fast”) y � 0.224 � 0.008x. (b) Graph of regres-
sion coefficients of the linear function for experimental
groups and their respective 95% confidence intervals.
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strated at the level of receptor turnover (Patel et al.,
1996; Woo et al., 1996), synthesis (Stachowiak et al.,
1986; Sivam, 1995), metabolism (Ase et al., 2000),
reuptake (Gobbi et al., 1994; Pan et al., 2001), and
synaptic availability (Lent, 1984; Hall et al., 1999).
As is apparent from results in other invertebrate sys-
tems (O’Gara et al., 1991), the present experiments
suggest that such mechanisms were not only acti-
vated, but were ultimately manifested at the behav-
ioral level.

The behavioral effects associated with chronic
5-HT treatment (in this study) were unlike those that
accompanied acute treatment with 5-HT (Huber and
Delago, 1998). Decreased retreat, the main behavioral
effect of acute 5-HT infusion, closely parallels the
behavior of dominant crayfish during the initial peri-
ods of hierarchy formation (Goessmann et al., 2000).
In contrast, slow 5-HT treatment produced a behav-
ioral change (i.e., increased escalation) similar to
what is found in dominant crayfish after several days
of behavioral reinforcement (Issa et al., 1999; Goess-
mann et al., 2000). Such findings have implications
for the formation of social dominance in crayfish.
Namely, are compensatory mechanisms, similar to
those apparent in 5-HT treated animals, also activated
within natural contexts? Recent work supports such a
possibility. For instance, CNS levels of 5-HT do not
vary as a function of social rank (Huber et al., 2001b).
Moreover, established dominance facilitates dynamic,
synaptic alterations that occur at multiple time frames
(Yeh et al., 1996,1997; Krasne et al., 1997). Rather
than the absolute amount of 5-HT in the CNS, it is
likely that magnitude, duration, and temporal pattern
of release, as well as synaptic neuromodulator ratios,
are critical for determining the resulting behavioral
phenotype (Huber and Delago, 1998; Crider and Coo-
per, 1999; Listerman et al., 2000; Peeke et al., 2000;
Sneddon et al., 2000; Kravitz, 2000; Teshiba et al.,
2001).

CONCLUSIONS

As a motivational state, the term aggression is in-
voked as an intervening concept because it is of
inherent utility for predicting a range of behavioral
acts. The explanatory power afforded by such a con-
cept, however, is diminished when each of its proxi-
mate mechanisms are viewed as static characteristics.
Previous attempts to study “aggression” have centered
on implementing pharmacological compounds with
broad and often unknown actions (Olivier et al., 1989;
Fuller, 1996), or “knocking out” one component of a
particular system for a prolonged duration (Chen et

al., 1994; Saudou et al., 1994; Cases et al., 1995).
Despite the information derived from such ap-
proaches, the current status of our understanding is, in
fact, that we understand very little about 5-HT’s role
in aggression without considering specific brain re-
gions (Blanchard et al., 1991; Amstislavskaya and
Kudryavtseva, 1997; Korzan et al., 2000), genetic
history (Brunner et al., 1993; Cases et al., 1995), or
social context (Ison et al., 1996; Yeh et al., 1997;
Berton et al., 1999; Ferris, 2000). Moreover, the role
of 5-HT in aggression may depend heavily on its
interaction with other molecules (Ferris and Delville,
1994). A single neural substrate, such as amounts of a
particular neuromodulator, is unlikely to explain the
functional role of monoamine systems in behavior
(Lederhendler and Schulkin, 2000). Similar perspec-
tives have emerged from work on steroid hormones in
developing insect (Henrich and Brown, 1995) and
avian (Arnold and Schlinger, 1993; Ottinger et al.,
1997) species, the effects of neuromodulators on net-
work properties (Johnson and Harris-Warrick, 1990;
Katz et al., 1994; Stevenson and Meuser, 1997), and
environment-mediated alterations in neurochemical
systems (Fox et al., 1997; Yeh et al., 1997; Soma et
al., 2000). Such systems seem to foster adaptive be-
havior within the proper context (Kravitz, 1988).

Taken together, the biochemical and behavioral
results of the present experiments make clear that
although our goal was to measure effects of absolute
5-HT content on aggression, it is likely that we ob-
served the behavioral effects caused by a complex
cascade of neurochemical changes. Moreover, the
present study underscores the importance of verifying
the effectiveness and specificity of pharmacological
substances in every system in which they are used. In
conjunction with findings of Doernberg et al. (2001),
an increasingly dynamic view of the neurochemical
basis of aggression has emerged from recent work in
crustacean species. A more productive framework for
studying the interface between neuromodulators and
behavior may be to view such molecules only as
short-term modulatory components embedded within
larger, dynamically organized systems that are critical
for governing behavior. Chronic removal of one ele-
ment will thus fail to cause a single, well-defined
deficit, but rather it will reconstitute the entire neuro-
nal environment. Accordingly, combining physiology
and molecular biology with quantitative behavioral
analyses is a principle goal for future research. In
decapod crustaceans, such a combination offers a
fruitful avenue for bringing behavioral analyses down
to the level of individual neurons and thereby allow-
ing for a more thorough understanding of causal
mechanisms in aggression.
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